Oppenheimer: The Movie and the Man

Two so-called “summer blockbuster” movies were recently released to theatres in the grand tradition of past studio offerings. In recent years, the movie industry has had to face the new world of mass-produced entertainment, multiple streaming outlets, large home-theatre screens, and video overload for the public. Notable theatre releases have become rare and the old concept of “going to the movies” is now a quaint memory for us older folks.

J.Robert Oppenheimer[1]

Hollywood’s current answer to all of this are two high-budget films, Barbie and Oppenheimer, whose themes and target audiences could not be more different. Linda and I went to see Oppenheimer in all its imax glory, recently. This post is both a review of the movie and a brief retrospective on the real-life J. Robert Oppenheimer and the development of the atomic bomb at Los Alamos, New Mexico. With the success of the Manhattan Project, Oppenheimer and his colleagues not only abruptly ended the War with Japan in 1945, they forever changed the world in which we live while emphasizing the dire need for international peace and cooperation between the peoples of this earth. From all reports, the Barbie film adroitly adds fanciful humor and adult insight to the nostalgia of Mattel’s iconic Barbie Doll – pure entertainment! Oppenheimer tells the story of what, in my personal opinion, is the most dramatic and impactful event in the annals of recorded history – the story of Los Alamos and the development of the atomic bomb and what it portends for humanity.

Central to the drama and historical consequence of Los Alamos are the personal stories of two of the greatest minds in the annals of physics: Albert Einstein and J. Robert Oppenheimer. Einstein was, deservedly, Time Magazine’s Person of the (20th) Century for revolutionizing the physics of space and time with his theories of special and general relativity. If J. Robert Oppenheimer was the father of the atomic bomb, Einstein was its unwitting godfather by virtue of his early findings on relativity. Einstein’s genius and his contributions to physics are second only to those of Isaac Newton (a close call). Oppenheimer’s brilliant mind was, reputedly, and arguably, of course, second to none in recorded history.

           “It was clear also at Los Alamos that he was intellectually superior to us”                                     – Hans Bethe, Nobel Laureate in physics

Hans Bethe went on to say that “Oppenheimer was a tremendous intellect,” and that he had never known anyone quite so quick in comprehending both scientific and general knowledge. He recalled that Oppenheimer knew everything that happened at Los Alamos – from the physics laboratory to the machine shop. Similar testimonials left behind by Nobel Prize winning physicists who were recruited to Los Alamos by Oppenheimer and worked under him bear irrefutable witness to his brilliance. Almost to a person, those who were there said the success of the bomb program at Los Alamos could not have happened without “Oppie” conducting the technical orchestration required across multiple disciplines. These testimonials came from the best minds that Europe and the United States had to offer, scientific minds not given to hyperbole. With no managerial experience whatsoever prior to his appointment as THE technical leader on the atomic bomb project – no surprise to anyone – he proceeded to astonish even his scientific colleagues with his ability to quickly acquire and implement the management skills necessary to complement General Leslie Groves’ efforts as military liason in charge of the Manhattan Project – reporting to the highest levels in Washington.

Why were so many European scientists involved at Los Alamos, and why the remote, high-desert wilderness of New Mexico? Significantly, many of America’s top scientific minds in 1942 were recent Jewish refugees who came to this country in the nineteen-thirties to escape the Nazi threat sweeping Europe. Many of them had been working abroad at the cutting edge of the new science of quantum mechanics. Einstein himself arrived here in 1931 for that very reason, although he never worked on the atomic bomb program and remained a resident fellow at Princeton’s Institute for Advanced Study during the war effort where his sole charter was to continue satisfying his curiosity about the laws of nature. The very real possibility that German physicists might be first to develop a nuclear weapon struck terror in the hearts of these immigrants from Europe who had no doubts concerning Hitler’s motives.

As for the unlikely choice of remote Los Alamos as the gathering place for some of the world’s finest scientific minds, there were two justifications. First: absolute military secrecy was a requirement for developing the most powerful weapon known to man. We were at war with both Germany and Japan, and our supposed ally, Russia under Stalin, was suspect at best. Second: Oppenheimer’s prosperous family had access to a cabin in the Pecos Wilderness, near Los Alamos – a place where Robert and his younger brother, Frank, spent youthful summers exploring the landscape on horseback. Oppenheimer knew and loved this high desert wilderness, far from the hum and crowded conditions of academic and industrial centers back east where strict secrecy would be impossible.

It was Oppenheimer who recommended Los Alamos as the site of one of history’s most dramatic developments, and it was Oppenheimer who convinced the necessary legion of Nobel Laureates and the best and brightest of developing young minds to follow him there. He and General Leslie Groves, the military officer who, with Oppenheimer would run the program, could not describe to this mother-lode of scientific talent just where they (and their families – of necessity) were to be relocated or just what they would be working on! Yet most of them signed-on to such a vague circumstance because they believed in J. Robert Oppenheimer and because of the need to insure that German scientists had no unrecoverable, top-secret head start on nuclear weapons technology. Many of the recruits had already surmised that the work at Los Alamos would be connected to the earlier blockbuster reports from Germany that Hahn and Strassman had succeeded in “splitting the atom” in 1938.

Albert Einstein’s “Bit Part” in the Film

My Einstein

Oppenheimer and the Manhattan Project at Los Alamos have the central starring roles in Oppenheimerwhich does an excellent job of telling both stories. Einstein has but a bit part in the film even though it was he, in 1905, who unwittingly paved the long road leading to Los Alamos in the high desert of New Mexico and  then onward to today’s massive arsenals of nuclear weapons. Albert Einstein, a world-class pacifist, was never attempting to build bombs. His scientific efforts were motivated solely by an insatiable curiosity regarding nature’s most elusive secrets.

Einstein’s 1905 paper on special relativity ended (almost as a footnote) with the most famous equation in all of physics: e=mc2 which suggests that a tiny bit of mass is equivalent to a very large quantity of energy – the fundamental principle behind the immense destructive power of nuclear weapons. Einstein’s theory of special relativity changed not only our notions of absolute space and absolute time, but our long-held belief that energy and matter are separate and distinct entities – not interchangeable. Einstein’s famous and simple equation expressed that (theoretically, at least) mass and energy are two manifestations of the same entity and that one could possibly be converted into the other – but how? That question had no answer for the next thirty-three years – until 1938 when the two German researchers (Hahn and Strassman) demonstrated nuclear fission in the laboratory on a tiny, experimental scale. Einstein’s mass/energy principle had been visited, and now the die for future nuclear development was cast.

In an atomic bomb, a number of atomic nuclei in fissionable material such as plutonium or enriched uranium 235 are bombarded by atomic particles (bullets). Some of these target nuclei split into separate individual masses whose collective mass is slightly less, in each case, than their original nuclear mass before “fissioning.” High-energy neutrons are released by the fission process (in accordance with Einstein’s equation, e=mc2) which then, like still more random bullets, split neighboring atomic nuclei in still greater numbers and the process continues to build exponentially. Such a run-away “chain reaction” produces tremendous net energy (virtually instantaneously) before the nuclear material is totally spent. The Trinity Test which produced history’s first atomic explosion occurred on July 14, 1945 at Los Alamos. A plutonium core no larger than a bowling ball liberated the energy equivalent of close to ten-thousand tons of TNT – enough to completely flatten a small city with a single bomb.

Imagine the pressures on those involved in the Manhattan Project, especially Oppenheimer. The task? Leveraging the infant laboratory results of Hahn and Strassman from 1938 (fission in a teapot, one might say) and, from that meager beginning, advancing atomic physics far enough to build and demonstrate an immensely powerful, deliverable weapon of war in less than three years while working from a remote, start-from-scratch outpost like Los Alamos. The stakes: ending World War II and ensuring that Nazi fascism would not triumph over the west should Germany initiate a successful bomb program of its own. Imagine the ignominy for Washington and all involved with Los Alamos if, after spending tremendous national resources on the Manhattan Project, the initial test was a dud. Not only was the Trinity test a complete success on July, 14, 1945, but two successful detonations over Hiroshima and Nagasaki ended the war less than a month later.

As for the Film, Itself:

The film, Oppenheimer, is a triumphantly successful effort to bring the complete story alive for the public audience. For those who are scientifically and historically inclined, the film delivers the goods. For those more interested in human beings – their conflicts and their triumphs, the film displays brilliantly, the triumph and tragedy of J. Robert Oppenheimer, the center of gravity for the entire Los Alamos story.

Murphy's Oppenheimer_1

Cillian Murphy is perfectly cast as J. Robert Oppenheimer. The sparse, slender frame/persona is spot-on, the gaunt, angular face and cheekbones register, and the critically important, prominent blue eyes could not have been closer to the real thing. From the many film clips and pictures I have seen over the years, Oppenheimer’s eyes could belie, at times, a piercing impatience with the merely- mortal intellects he found around him, and, at other times, a far-away preoccupation with distant thoughts and formative ideas. What really registered with me was Murphy’s obvious grasp of the personal mannerisms and speech of his subject. Oppenheimer’s exaggerated flair with the ever-present cigarette and his many other gestures are perfectly captured by the actor.

For the typical move-goer, these things might not seem so important to the credibility of the film. To me, they are important, for just as the real J. Robert Oppenheimer was the indispensable ingredient for the success of the Manhattan Project, Cillian Murphy and his fine portrayal is critical to the full impact of the film on those of us who know and understand the human and historic story of Los Alamos. I hope the Motion Picture Academy is listening.

In summary, everything about Oppenheimer, the film and its production, is laudable. It covers a complex four-year period quite completely, accurately, and at a very brisk clip. This is a film everyone should see.

A highly recommended prerequisite to viewing the film, Oppenheimer!

 By all means, first watch the 1980 documentary by Jon Else named The Day After Trinity. In only ninety spellbinding minutes, it will beautifully set the scene for you, largely through the first-hand accounts of the scientists and others who lived the story and who personally contributed to Los Alamos’ success. You will understand the fast-paced movie far better after viewing this film. It is an absolute gem of a documentary – my favorite of all the numerous documentaries in my DVD collection – covering many subjects!

Finally, the human drama at-play in Los Alamos and its immediate aftermath – the dropping of two atomic bombs on the Japanese Cities of Hiroshima and Nagasaki which abruptly ended our war with Japan – that is the real message that both The Day After Trinity and Oppenheimer wish to convey. Now it has been done, and it should never be done again. J. Robert Oppenheimer was, in many ways, a victim of the bomb, as were others who worked on the program. The heavy responsibility he bore, and the inevitable misgivings which surfaced over its use ultimately consumed Oppenheimer in his remaining years.

Day-After-Trinity[1]

For me, nothing can match the drama and the human lessons that stem from the Los Alamos saga, a story which begins back in 1905 with the purely scientific determination by Albert Einstein that e=mc2, and then proceeds to document the abrupt end of World War II in August of 1945 using the atomic bomb. Today, we struggle with the world-wide proliferation of nuclear weapons – weapons with routinely one-hundred times the destructive power of the bombs dropped on Japan. It is precisely the situation that J. Robert Oppenheimer feared once the nuclear genie was let loose from the bottle.

Despite Oppenheimer’s best personal efforts after the war, the world community never reacted sufficiently to his plea. He felt that the world control of nuclear weapon production and proliferation should have begun “the day after Trinity.” Alas, that did not happen.

Trinity Blast_1

 

Note: As always, the author has no commercial involvement or interest in any product or service mentioned in this document.

DNA: The Blueprint of Life; Watson, Crick, the Double Helix and Other Genetic Observations

Welcome, readers of my blog. This post you are viewing is number two-hundred in a long line of mini-essays which have appeared in this space since my first, titled The Lure of Science, in February of 2013. Writing about little things such as my reflections on life has provided me much pleasure and a satisfying outlet. While relishing small pleasures along the way, I remain forever intrigued with the BIG thoughts, the truly great accomplishments, and the monster minds which formulated them. I devote this special post, number two-hundred, to one of the great chapters in scientific history – discovering the double-helix nature of DNA.

Watson’s The Double Helix

The subject at hand is DNA, an acronym for the scientific term deoxyribonucleic acid. DNA is literally the blueprint of life – all life on this planet. What is more mysterious than life, itself? Think of DNA molecules quite literally as the repository of nature’s software program for all forms of life, the coding of which uniquely defines each and every one of us, not only as a species, but as distinct individuals. The biological hierarchy which defines us is complex; suffice it to say that DNA is the “instruction set” for our genes, those next-level entities which determine what and who we are.

I have begun reading Walter Isaacson’s newest book release titled, The Code Breaker. The story focuses on the 2020 Nobel Prize winner in biology, Jennifer Doudna, and the story of CRISPR which is an acronym for the gene editing technology which is now quite advanced – to a large extent, because of her work. To the best of my understanding (so far), the question has rapidly become not how to do this (gene editing), but should we do this. Author Isaacson does his subjects justice in his book. I say subjects, plural, because he deftly weaves Ms. Doudna’s story within a larger tapestry which includes the crucial efforts of scientific colleagues, particularly Nobel co-winner Emmanuele Charpentier. Isaacson couples all of this with a healthy dose of what Nobel-winning scientific endeavors are all about. 

Isaacson’s The Code Breaker

The scientific stakes are huge, here. So, too, is the competitive drive necessary to be first with the qualifying research and the scientific papers that justify Nobel-level consideration. This very theme, the competition for scientific immortality, has been repeated countless times throughout the history of science. Among the most reminiscent, for me, is the account by James Watson of his famous collaboration with Francis Crick to discover the structure of the DNA molecule itself. For their revelation in 1953 of the double-helix backbone structure supporting a four base-protein coding of cross-ties, these two researchers were awarded the 1962 Nobel Prize along with a third researcher, Maurice Wilkins.

James Watson’s account of DNA’s discovery appeared in his famous book, The Double Helix: A Personal Account of the Discovery of the Structure of DNA, first published in 1968. This book, with its revelation of the scientific discovery and the frank candor of its author, reads like a suspenseful, non-fiction detective story as opposed to what could have been a dry, scientific tome. In the book, Watson describes not only the science, but the competitive endeavor in which he and Crick found themselves immersed: the struggle to be first to finally decipher the biological holy grail – the structure of the DNA molecule. Linus Pauling, world-famous chemist, and Rosalind Franklin, a brilliant, pioneering female researcher are other significant players in the competitive drama and Watson devotes considerable ink to describing them and their roles in the unfolding event.

Crick and Watson at Cambridge

Once the double-helix nature of DNA was revealed by Watson and Crick, some important questions were resolved, specifically, how DNA can replicate itself and how male/female DNA are combined to produce those recognizable features of each that typically appear in offspring. Of course, the latest gene-editing findings by Jennifer Doudna and her fellow researchers all leverage-off the nature of the DNA molecule as first described by Watson and Crick. Enough said about the importance of Watson and Crick’s findings to the state of today’s biology!

Biological Inheritance … As We Came to Understand It

Double Helix

Prior to Charles Darwin and the theory of evolution as revealed in his masterwork, On the Origin of Species, published in 1859, little was known about the “bloody obvious” fact that offspring, to one degree or another, tend to reflect identifiable characteristics of their parents. Darwin’s certainty about the validity of “natural selection” as the core principle of evolution still left much uncertainty in his mind as to the actual mechanism of heredity – the passing along of biological traits. Notably mysterious to Darwin was the biological “mechanism” responsible for the significant changes and diversity that randomly occur within a species, thus setting the stage for natural selection to pass long-term judgement on the alternatives presented. Put another way: over the long-haul, natural selection favors genetic adaptations most favorable to survival in a given environment. 

In 1866, merely seven years after Darwin’s milestone book, an obscure Austrian monk published a little-noted paper on experiments breeding pea plants he had been performing in his spare time within his abbey’s small garden. Using three well-known variations of these plants and inter-breeding them, he meticulously tracked his results. The three variations studied were color: green or yellow plants; flower: white or violet; and seed texture: smooth or wrinkled. In Mendel’s paper, he dealt not only with dominant and recessive characteristics of these variables, but, surprisingly, determined that they manifested themselves in numerical ratios that were most revealing as to the nature of biological mechanisms at work!

Gregor Mendel: The Father of Genetic Science

Gregor Mendel

Mendel’s little paper was supremely important as the first documented revelation of DNA/genetics at work. He had just a few “offprints” printed (scientific terminology for the personal printing of a paper intended for presentation by its author). His findings were sent to the local chapter of naturalist bee-keepers in Brno, Austria, where it received scant attention or interest. Mendel’s work with pea-plants disappeared quickly into the shadows of history until his paper was discovered and publicized for its great significance by the famous English biologist, William Bateson, in 1902. Despite its delayed recognition after thirty-six years, Mendel’s genius nevertheless still provided sufficient impetus for the resulting cascade of discovery and knowledge which ultimately led us to Watson and Crick’s ground-breaking revelation of the DNA double-helix in 1953. And now, for better and for worse, we are close to possessing the incredible capability to understand and to actually edit our own genetic code.

Did Darwin Miss Early Access to Mendel’s Discoveries?

Historical accounts tell us of an offprint copy of his pea-plant experiments that Gregor Mendel purportedly sent to the great man, himself, Charles Darwin, shortly after Darwin’s book on evolution was published in 1859. Darwin had no knowledge of this Austrian abbey monk, Gregor Mendel – or what he was attempting, but everyone, certainly Mendel, knew about Charles Darwin after 1859. Whether fact or fanciful lore, this milestone scientific paper of Mendel’s on genetics/inheritance was supposedly sent by Mendel and sat, in offprint form, unread amid the stacks of books and papers in Darwin’s study at Downe House. There, it was purportedly discovered after Darwin’s death. Walter Isaacson mentions the incident in The Code Breakers, but I have heard that the account as told may merely be fanciful.

Mendel’s Rare Offprint for Sale: on the Internet!

With my long interest in the history of science, I am familiar with many of the great milestones of scientific discovery and their publications – their formal introduction to the scientific world and the public at large.  One of the most memorable items I have ever seen appear for sale, either at auction or via those who deal in such things, came from a renowned bookseller in London some twenty-five years ago. He was offering one of the few of Mendel’s original offprint papers in existence for a then jaw-dropping sixty-four thousand dollars. The paper was said to be in very good condition. I recall how, even back then, I sensed the rarity and deep significance of that particular item. Being an amateur historian of little means, I could only imagine what it would be like to possess such a rare, important slice of scientific history. Who knows where that particular offprint resides today: possibly in some large university library collection. Is it possible that it might have been filed away, unread, by Charles Darwin, himself? One thing I do know about that particular item: the sixty-four thousand dollar price twenty-five years ago would barely be a down-payment in today’s collecting market. The nature of such ground-breaking scientific rarities will ultimately render them priceless – which is as it should be, it seems to me. 

Were Darwin aware of Mendel’s work with pea-plants through Mendel’s paper, he would have been fascinated with the revelations. Darwin wrote often about the nature of heredity in his many books before The Origin. The concept of DNA molecules which are integral to genes and chromosomes were well beyond even Darwin’s long reach. He was convinced, however, that there were biologic hereditary entities at work which shape and define all living things. Darwin referred to them as “gemmules,” while remaining necessarily vague about their attributes and ultimate reality. Although Mendel was able to shed first-light on the “how” of heredity’s behavior, the biological nature of its agents remained to him a mystery, as was the case with Darwin.

Scientific Knowledge IS Power; Have We the Wisdom to Handle It?

Many key discoveries have occurred in the rich history of biology and cell biology. The treasure-chest of acquired knowledge is full of just what the name implies: treasure. That accumulation of knowledge concerning ourselves and the world of living things is perhaps the most significant of all testimonials to what is good and noble about us humans. In these recent pandemic months, when Covid 19 was sweeping the country, instilling fear and taking well over a half-million lives in the process, vaccines quickly appeared which worked exceedingly well in diminishing the threat of this virus. Not many years ago, effective vaccines would have taken years to develop, if at all. It is said that much of the necessary research necessary to neutralize Covid 19 had recently been done and utilized on the earlier HIV and SARS viruses and that the vaccine methodologies were literally “on the shelf” – ready to use on this class of virus. This recent and undeniable affirmation of the power of scientific knowledge is all we need to know about why we should pay heed to pure scientific research which is foundational to all technologies that prove useful to mankind.

Gene editing holds the promise of correcting (curing) some of nature’s cruelest maladies: sickle-cell anemia, Huntington’s disease, Tay Sachs, for example. Huntington’s is a spectacular example of how a simple DNA/gene coding mistake can condemn an individual’s adult future. Although direct human trials of gene editing medicine are necessarily very rare at this time, the process has already been proven successful on a patient with sickle-cell anemia. Along with the promise of positive advances in medicine comes the danger of mis-using genetic editing. Consider “designer-babies,” and let your imagination run wild.

I have heard the comment that there are two major scientific advances in recent history that point to the need for the strictest supervision of their applications in order to avoid horrific consequences. The first is Albert Einstein’s purely scientific discovery in 1905 that mass and energy are one and the same. That revelation, despite Einstein’s purely scientific motivations behind it, has resulted in global arsenals of nuclear weapons whose power to destroy everything and everyone on this planet requires the utmost vigilance. The second cautionary tale involves irresponsible gene editing which poses a different set of catastrophic scenarios, but, like nuclear energy, once “the genie is out of the bottle,” it would be virtually impossible to recapture and control it. It has long been my view that every advance in science and technology comes complete with a pairing of both advantages for humanity (if wisely utilized), as well as a price to pay if not. Today’s internet and social media are good examples of vast benefits being constantly offset by potential and actual problems. In the case of gene editing, the potential for good and for bad reach the highest levels. At risk, is the potential for joining nuclear energy as a technology for which the “genie let loose from the bottle” is an apt metaphor. 

Months after the lone atomic bomb test held in 1945 at Los Alamos, code-named Trinity, and the subsequent atomic bombing of Hiroshima and Nagasaki, J. Robert Oppenheimer, the bomb’s chief architect was asked by reporters about the prospects for the international control of atomic energy. A memorable film clip which clearly reflects his deep regret, even disgust, burns itself onto the mind’s eye. His answer: “It’s too late; it should have been done the day after Trinity.”

The question remains as man probes ever deeper into nature’s secrets: will we be wise enough to use science and technology to our advantage, or will we allow technology to de-rail and destroy us?

It seems obvious that we must continue to uncover the miracles of nature, those obvious and lasting truths underpinning our human existence, not only to use them to our advantage, but to glean the wisdom and perspective contained, therein. It appears clear from what I read that the scientific community is well aware of its obligations regarding gene editing.

J. Robert Oppenheimer and the Atomic Bomb: Triumph and Tragedy

J. Robert Oppenheimer: Along with Albert Einstein, one of the most interesting and important figures in modern history. Although very different in world-view and personality, the names of these two men are both linked to arguably the most significant human endeavor and resultant “success” in recorded history. The effort in question was the monumental task of the United States government to harness the energy of the atom in a new and devastating weapon of war, the atomic bomb. The super-secret Manhattan Project was a crash program formally authorized by president Franklin Roosevelt on Dec. 6, 1941. The program’s goal: In a time-frame of less than four years and against all odds, to capitalize on very recent scientific discoveries and rapidly develop an operational military weapon of staggering destructive power.

Albert Einstein and the Atomic Bomb

Albert Einstein, whose scientific resume ranks just behind that of Isaac Newton, had virtually no role in this weapons program save for two notable exceptions. First and foremost, it was Einstein’s follow-up paper to his milestone theory of special relativity in 1905 which showed that, contrary to long-standing belief, mass and energy are one and the same, theoretically convertible from one to another. That relationship is expressed by the most famous equation in science, e = mc2, where e is the energy inherent in mass, m is the mass in question, and c is the constant speed of light. One careful look at this relationship reveals its profoundness. Since the speed of light is a very large number (300 million meters per second), a tiny bit of mass (material) converted into its energy equivalent yields a phenomenal amount of energy. Note that Einstein had proposed a theoretical, nonetheless real, relationship in his equation. The big question: Would it ever be possible to produce that predicted yield of energy in practice? In 1938, two chemists in Hitler’s Germany, Hahn and Strassman, demonstrated nuclear fission in the laboratory, on a tiny scale. That news spread quickly throughout the world physics community – like ripples on a giant pond. It now appeared feasible to harness the nuclear power inherent in the atom as expressed by Einstein’s equation.

In August of 1939, alarmed by the recent news from Germany, Hungarian physicist Leo Szilard asked his colleague, Albert Einstein, to affix his signature to a letter addressed to President Roosevelt. The letter warned of recent German scientific advances and Germany’s sudden interest in uranium deposits in the Belgian Congo of Africa. Einstein, a German Jew who fled his homeland in 1932 for fear of Hitler’s growing influence, dutifully but reluctantly signed his name to the letter. Einstein’s imprimatur on the letter was Szilard’s best hope of affixing Roosevelt’s attention on the growing feasibility of an atomic bomb. Einstein and many other European scientists were, from personal experience, justifiably terrified at the prospect of Hitler’s Germany acquiring such a weapon, and the Germans had first-class scientific talent available to tackle such a challenge.

Einstein, one of history’s great pacifists, was thus ironically tied to the atomic bomb program, but his involvement went no further. Einstein never worked on the project and, after the war when Germany was shown to have made no real progress toward a weapon, he stated: “Had I known that the Germans would not succeed in producing an atomic bomb, I never would have lifted a finger.”

Stranger Than Fiction: The High Desert of Los Alamos, New Mexico

By early 1943, peculiar “invitations” from Washington were being received by many of this country’s finest scientific/engineering minds. A significant number of these ranked among the world’s top physicists including Nobel Prize winners who had emigrated from Europe. These shadowy “requests” from the government called for the best and the brightest to head (with their families in many cases) to the wide-open high desert country of New Mexico. Upon arrival, they would be further informed (to a limited extent) of the very important, secret work to be undertaken there. I have always believed that fact is stranger than fiction, and much more interesting and applicable. What transpired at Los Alamos over the next three years under the direction of J. Robert Oppenheimer and Army General Leslie Groves is scarcely believable, and yet it truly happened, and it has changed our lives unalterably.

One of my favorite narratives from Jon Else’s wonderful documentary film on the atomic bomb, The Day After Trinity, beautifully describes the ludicrous situation: “Oppenheimer had brought scientists and their families fresh from distinguished campuses all over the country – ivied halls, soaring campaniles, vaulted chapels. Los Alamos was a boom town – hastily constructed wooden buildings, dirt streets, coal stoves, and [at one point] only five bathtubs / There were no sidewalks. The streets were all dirt. The water situation was always bad / It was not at all unusual to open your faucet and have worms come out.” Los Alamos was like a California gold-rush boom town, constructed in a jiffy with the greatest assemblage of world-class scientific talent that will ever be gathered in one location. General Groves once irreverently quipped (with humor and perhaps some frustration) that Los Alamos had the greatest assemblage of “crack-pots” the world has ever known.

As improbable as the situation and the task at hand appeared – even given an open check-book from Roosevelt and Congress – Groves and Oppenheimer made it happen. I cannot think of any human endeavor in history so complex, so unlikely…and so “successful.” The triumph of NASA in space comes in a close second, but even realizing JFK’s promise of a man on the moon by 1969 cannot top the extraordinary scenario which unfolded at Los Alamos, New Mexico – all largely shielded from view.

The initial (and only) test of the atomic bomb took place on July 16, 1945, on the wide expanse of the New Mexico desert near Los Alamos. The test was code-named “Trinity.” The accompanying picture shows Oppenheimer and General Groves at ground zero of the blast, the site of the high tower from which the bomb was detonated. Evidence of desert sand fused into glass by the intense heat abounds. The test was a complete technical success – vindication for the huge government outlay and the dedication on the part of so many who put their lives on hold by moving to the high desert of New Mexico and literally “willing” their work to success for fear of the Germans. By July of 1945, however, Germany was vanquished without having made any real progress toward an atomic bomb.

The World Would Never Be the Same

That first nuclear detonation signaled a necessary reset for much of human thought and behavior. Many events quickly followed that demonstrated the power of that statement. Of immediate impact was the abrupt termination of World War II, brought about by two atomic bombs successfully dropped on Japan just weeks after the first and only test of the device (Hiroshima, August 6, 1945; Nagasaki, August 9, 1945). The resulting destruction of these two cities accomplished what many thousands of invading U.S. troops might have taken months to complete – with terrible losses. The horrific effect of these two bombs on the people of Japan has been well documented since 1945. Many, including a significant number of those who worked on the development of these weapons protested that such weapons should never be used again. Once the initial flush of “success” passed, the man most responsible for converting scientific theory into a practical weapon of mass destruction quickly realized that the “nuclear genie” was irretrievably out of the bottle, never to be predictably and reliably restrained. Indeed, Russia shocked the world by detonating its first atomic bomb in 1949. The inevitable arms race that Oppenheimer foresaw had already begun… the day after Trinity.

The Matter of J. Robert Oppenheimer, the Man

J. Robert Oppenheimer had been under tremendous pressure as technical leader of the super-secret Manhattan project since being appointed by the military man in charge of the entire project, Army general Leslie Groves. Groves was a military man through and through, accustomed to the disciplined hierarchy of the service, yet he hand-picked as technical lead for the whole program the brilliant physicist and mercurial liberal intellectual, J. Robert Oppenheimer – the most unlikely of candidates. Oppenheimer’s communist wife and brother prompted the FBI to vigorously protest the choice. Groves got his way, however.

Groves’ choice of J. Robert Oppenheimer for the challenging and consuming task of technical leader on the project proved to be a stroke of genius on his part; virtually everyone who worked on the Manhattan Project agreed there was no-one but Oppenheimer who could have made it happen as it did.

“Oppie,” as he was known and referred to by many on the Manhattan Project, directed the efforts of hundreds of the finest scientific and engineering minds on the planet. Foreign-born Nobel prize winners in physics were very much in evidence at Los Alamos. Despite the formidable scientific credentials of such luminaries as Hans Bethe, I.I. Rabi, Edward Teller, Enrico Fermi, and Freeman Dyson, Oppenheimer proved to be their intellectual equal. Oppenheimer either already knew and understood the nuclear physics, the chemistry, and the metallurgy involved at Los Alamos, or he very quickly learned it from the others. His intellect was lightning-quick and very deep. His interests extended well beyond physics as evidenced by his great interest in French metaphysical poetry and his multi-lingual capability. Almost more incredible than his technical grasp of all the work underway at Los Alamos was his unanticipated ability to manage all aspects of this, the most daring, ambitious, and important scientific/engineering endeavor ever undertaken. People who knew well his scientific brilliance from earlier years were amazed at the overnight evolution of “Oppie, the brilliant physicist and academic” into “Oppie, the effective, efficient manager” and co-leader of the project with General Groves.

Indelibly imprinted upon my mind is the interview scene with famous Nobel Laureate Hans Bethe conducted by Jon Else, producer of The Day After Trinity. Bethe was Oppie’s pick to be group leader for all physics on the project. The following comments of Bethe, himself a giant in theoretical physics, cast a penetrating light on the intellectual brilliance of J. Robert Oppenheimer and his successful role in this, the most daring and difficult scientific project ever attempted:

– “He was a tremendous intellect. I don’t believe I have known another person who was quite so quick in comprehending both scientific and general knowledge.”
– “He knew and understood everything that went on in the laboratory, whether it was chemistry, theoretical physics, or machine-shop. He could keep it all in his head and coordinate it. It was clear also at Los Alamos, that he was intellectually superior to us.”

The work was long, hard, and often late into the night at Los Alamos for its two thousand residents, but there was a social life at Los Alamos, and, according to reports, Robert Oppenheimer was invariably the center of attention. He could and often did lead discussions given his wide-ranging knowledge …on most everything! Dorothy McKibben (seated on Oppenheimer’s right in the following picture) was the “Gatekeeper of Los Alamos” according to all who (necessarily) passed through her tiny Manhattan Project Office at 109 East Palace Avenue, Santa Fe, New Mexico. There, they checked-in and collected the credentials and maps required to reach the highly secured desert site of Los Alamos. Ms. McKibben was affluent in her praise of Oppenheimer: “If you were in a large hall, and you saw several groups of people, the largest groups would be hovering around Oppenheimer. He was great at a party, and women simply loved him and still do.”

The Nuclear Weapons Advantage Proves to be Short-Lived

What was believed in 1945 to represent a long term, decided military advantage for the United States turned out to be an illusion, much as Oppenheimer likely suspected. With the help of spies Klaus Fuchs at Los Alamos, Julius Rosenberg, and others, Russia detonated their first atomic bomb only four years later.

Oppenheimer knew better, because he understood the physics involved and that, once demonstrated, nuclear weapons would rapidly pose a problem for the world community. When interviewed years later at Princeton where he had been head of the Institute for Advanced Studies (and Albert Einstein’s “boss”) he is shown in The Day After Trinity responding to the question, “[Can you tell us] what your thoughts are about the proposal of Senator Robert Kennedy that President Johnson initiate talks with the view to halt the spread of nuclear weapons?” Oppenheimer replied rather impatiently, “It’s twenty years too late. It should have been done the day after Trinity.”

J. Robert Oppenheimer fully appreciated, on July 16, 1945, the dangers inherent in the nuclear genie let loose from the bottle. His fears were well founded. Within a few years after Los Alamos, talk surfaced of a new, more powerful bomb based on nuclear fusion rather than fission, nevertheless still in accordance with e = mc2. This became popularly known as the “hydrogen bomb.” Physicist Edward Teller now stepped forward to promote its development in opposition to Oppenheimer’s stated wish to curtail the further use and development of nuclear weapons.

Arguments raged over the “Super” bomb as it was designated, and Teller prevailed. The first device was detonated by the U.S. in 1952. A complex and toxic cocktail of Oppenheimer’s reticence toward development of the Super combined with the past communist leanings of his wife, brother Frank, and other friends led to the Atomic Energy Commission, under President Eisenhower, revoking Oppenheimer’s security clearance in 1954. That action ended any opportunity for Oppenheimer to even continue advising Washington on nuclear weapons policy. The Oppenheimer file was thick, and the ultimate security hearings were dramatic and difficult for all involved. As for the effect on J. Robert Oppenheimer, we have the observations of Hans Bethe and I.I. Rabi, both participants at Los Alamos and Nobel prize winners in physics:

– I.I. Rabi: “I think to a certain extent it actually almost killed him, spiritually, yes. It achieved just what his opponents wanted to achieve. It destroyed him.”
– Hans Bethe: “He had very much the feeling that he was giving the best to the United States in the years during the war and after the war. In my opinion, he did. But others did not agree. And in 1954, he was hauled before a tribunal and accused of being a security risk – a risk to the United States. A risk to betray secrets.”

Later, in 1964, attitudes softened and Edward Teller nominated Oppenheimer for the prestigious Enrico Fermi award which was presented by President Johnson. As I.I. Rabi observed, however, the preceding events had, for all intents and purposes, already destroyed him. Oppenheimer was a conflicted man with a brilliant wide-ranging intellect. While one might readily agree with Hans Bethe’s assessment that Oppenheimer felt he was “giving the best to the United States in the years during and after the war,” there is perhaps more to the story than a significantly patriotic motivation. Oppenheimer was a supremely competent and confident individual whose impatient nature was tinged with a palpable arrogance. These characteristics often worked to his disadvantage with adversaries and co-workers.
Then there was the suggestion that, in addition to his patriotic motives, Oppenheimer was seized by “the glitter and the power of nuclear weapons” and the unprecedented opportunity to do physics on a grand scale at Los Alamos, and those were also major motivations. Other colleagues on the project later confessed to feeling the glitter and power of nuclear weapons, themselves. A brilliant man of many contradictions was Oppenheimer – that much is certain. Also certain is the likelihood that the man was haunted afterward by misgivings concerning his pivotal role, whatever his motivations, in letting loose the nuclear genie. The sadness in his eyes late in life practically confirms the suspicion. That is the tragedy of J. Robert Oppenheimer. Triumph has a way of extracting its penalty, its pound of flesh. I can think of no better example than Oppenheimer.

Immediately upon hearing of the bombing of Hiroshima, Hans Bethe recalled, “The first reaction which we had was one of fulfillment. Now it has been done. Now the work which we have been engaged in has contributed to the war. The second reaction, of course, was one of shock and horror. What have we done? What have we done? And the third reaction: It shouldn’t be done again.”

Nuclear Weapons: The Current State and Future Outlook

In the headlines of today’s news broadcasts as I write this is the looming threat of North Korean nuclear-tipped intercontinental ballistic missiles. The North Koreans have developed and tested nuclear warheads and are currently test-launching long-range missiles which could reach the U.S. mainland, as far east as Chicago. Likewise, Iran is close to having both nuclear weapons and targetable intermediate-range missiles. Nuclear proliferation is alive and well on this earth.

To illustrate the present situation, consider one staple of the U.S. nuclear arsenal -the one megaton thermonuclear, or hydrogen, bomb with the explosive equivalent of just over one million tons of TNT. That explosive energy is fifty times that of the plutonium fission bomb which destroyed the city of Nagasaki, Japan (twenty-two thousand tons of TNT). The number of such powerful weapons in today’s U.S. and Russian nuclear stockpiles is truly staggering, especially when one considers that a single one megaton weapon could essentially flatten and incinerate the core of Manhattan, New York. Such a threat is no longer limited to a device dropped from an aircraft. Nuclear-tipped ICBMs present an even more ominous threat.

The surprise success of the first Russian earth-orbiting satellite, “Sputnik,” in 1957 had far more significance than the loss of prestige in space for the United States. Accordingly, the second monumental and historic U.S. government program – on the very heels of the Manhattan Project – was heralded by the creation of NASA in 1958 and its role in the race to the moon. President John F. Kennedy issued his audacious challenge in 1963 for NASA to regain lost technical ground in rocketry by being first to put a man on the moon …in the decade of the sixties – in less than seven years! Many in the technical community thought the challenge was simply “nuts” given the state of U.S. rocket technology in 1963. As with the then very-recent, incredibly difficult and urgent program to build an atomic bomb, the nation once again accomplished the near-impossible by landing Armstrong and Aldrin on the moon on July 20, 1969 – well ahead of the Russians. And it was important that we surpassed Russia in rocket technology, for our ICBMs, which are the key delivery vehicle for nuclear weapons and thus crucial to most of the U.S. strategic defense, were born of this country’s efforts in space.

“Fat Man,” the bomb used on Nagasaki – 22 kilotons of TNT

Photo: Paul Shambroom

B83 1 megaton hydrogen bombs…compact and deadly

The above picture of a man casually sweeping the warehouse floor in front of nearly ten megatons of explosive, destructive power, enough to level the ten largest cities in America gives one pause to reflect. On our visit to Los Alamos in 2003, I recall the uneasy emotions I felt merely standing next to a dummy casing of this bomb in the visitor’s center and reflecting on the awesome power of the “live” device. Minus their huge development and high “delivery” costs, such bombs are, in fact, very “cheap” weapons from a military point of view.

One conclusion: Unlike the man with the broom in the above picture, we must never casually accept the presence of these weapons in our midst. One mistake, one miscalculation, and nuclear Armageddon may be upon us. The collective angels of man’s better nature had better soon decide on a way to render such weapons unnecessary on this planet. Albert Einstein expressed the situation elegantly and succinctly:

“The unleashing of [the] power of the atom has changed everything but our modes of thinking and thus we drift toward unparalleled catastrophes.”

Under a brilliant New Mexico sky on October 16, 1945, the residents of the Los Alamos mesa gathered for a ceremony on J. Robert Oppenheimer’s last day as director of the laboratory. The occasion: The receipt of a certificate of appreciation from the Secretary of War honoring the contributions of Oppenheimer and Los Alamos.

In his remarks, Oppenheimer stated: “It is our hope that in years to come we may look at this scroll, and all that it signifies, with pride. Today, that pride must be tempered with a profound concern. If atomic bombs are to be added as new weapons to the arsenals of a warring world, or to the arsenals of nations preparing for war, then the time will come when mankind will curse the names of Los Alamos and Hiroshima. The peoples of the world must unite, or they will perish.”

In today’s world, each step along the path of nuclear proliferation brings humanity ever closer to the ultimate fear shared by J. Robert Oppenheimer and Albert Einstein. The world had best heed their warnings.