J. Robert Oppenheimer and the Atomic Bomb: Triumph and Tragedy

J. Robert Oppenheimer: Along with Albert Einstein, one of the most interesting and important figures in modern history. Although very different in world-view and personality, the names of these two men are both linked to arguably the most significant human endeavor and resultant “success” in recorded history. The effort in question was the monumental task of the United States government to harness the energy of the atom in a new and devastating weapon of war, the atomic bomb. The super-secret Manhattan Project was a crash program formally authorized by president Franklin Roosevelt on Dec. 6, 1941. The program’s goal: In a time-frame of less than four years and against all odds, to capitalize on very recent scientific discoveries and rapidly develop an operational military weapon of staggering destructive power.

Albert Einstein and the Atomic Bomb

Albert Einstein, whose scientific resume ranks just behind that of Isaac Newton, had virtually no role in this weapons program save for two notable exceptions. First and foremost, it was Einstein’s follow-up paper to his milestone theory of special relativity in 1905 which showed that, contrary to long-standing belief, mass and energy are one and the same, theoretically convertible from one to another. That relationship is expressed by the most famous equation in science, e = mc2, where e is the energy inherent in mass, m is the mass in question, and c is the constant speed of light. One careful look at this relationship reveals its profoundness. Since the speed of light is a very large number (300 million meters per second), a tiny bit of mass (material) converted into its energy equivalent yields a phenomenal amount of energy. Note that Einstein had proposed a theoretical, nonetheless real, relationship in his equation. The big question: Would it ever be possible to produce that predicted yield of energy in practice? In 1938, two chemists in Hitler’s Germany, Hahn and Strassman, demonstrated nuclear fission in the laboratory, on a tiny scale. That news spread quickly throughout the world physics community – like ripples on a giant pond. It now appeared feasible to harness the nuclear power inherent in the atom as expressed by Einstein’s equation.

In August of 1939, alarmed by the recent news from Germany, Hungarian physicist Leo Szilard asked his colleague, Albert Einstein, to affix his signature to a letter addressed to President Roosevelt. The letter warned of recent German scientific advances and Germany’s sudden interest in uranium deposits in the Belgian Congo of Africa. Einstein, a German Jew who fled his homeland in 1932 for fear of Hitler’s growing influence, dutifully but reluctantly signed his name to the letter. Einstein’s imprimatur on the letter was Szilard’s best hope of affixing Roosevelt’s attention on the growing feasibility of an atomic bomb. Einstein and many other European scientists were, from personal experience, justifiably terrified at the prospect of Hitler’s Germany acquiring such a weapon, and the Germans had first-class scientific talent available to tackle such a challenge.

Einstein, one of history’s great pacifists, was thus ironically tied to the atomic bomb program, but his involvement went no further. Einstein never worked on the project and, after the war when Germany was shown to have made no real progress toward a weapon, he stated: “Had I known that the Germans would not succeed in producing an atomic bomb, I never would have lifted a finger.”

Stranger Than Fiction: The High Desert of Los Alamos, New Mexico

By early 1943, peculiar “invitations” from Washington were being received by many of this country’s finest scientific/engineering minds. A significant number of these ranked among the world’s top physicists including Nobel Prize winners who had emigrated from Europe. These shadowy “requests” from the government called for the best and the brightest to head (with their families in many cases) to the wide-open high desert country of New Mexico. Upon arrival, they would be further informed (to a limited extent) of the very important, secret work to be undertaken there. I have always believed that fact is stranger than fiction, and much more interesting and applicable. What transpired at Los Alamos over the next three years under the direction of J. Robert Oppenheimer and Army General Leslie Groves is scarcely believable, and yet it truly happened, and it has changed our lives unalterably.

One of my favorite narratives from Jon Else’s wonderful documentary film on the atomic bomb, The Day After Trinity, beautifully describes the ludicrous situation: “Oppenheimer had brought scientists and their families fresh from distinguished campuses all over the country – ivied halls, soaring campaniles, vaulted chapels. Los Alamos was a boom town – hastily constructed wooden buildings, dirt streets, coal stoves, and [at one point] only five bathtubs / There were no sidewalks. The streets were all dirt. The water situation was always bad / It was not at all unusual to open your faucet and have worms come out.” Los Alamos was like a California gold-rush boom town, constructed in a jiffy with the greatest assemblage of world-class scientific talent that will ever be gathered in one location. General Groves once irreverently quipped (with humor and perhaps some frustration) that Los Alamos had the greatest assemblage of “crack-pots” the world has ever known.

As improbable as the situation and the task at hand appeared – even given an open check-book from Roosevelt and Congress – Groves and Oppenheimer made it happen. I cannot think of any human endeavor in history so complex, so unlikely…and so “successful.” The triumph of NASA in space comes in a close second, but even realizing JFK’s promise of a man on the moon by 1969 cannot top the extraordinary scenario which unfolded at Los Alamos, New Mexico – all largely shielded from view.

The initial (and only) test of the atomic bomb took place on July 16, 1945, on the wide expanse of the New Mexico desert near Los Alamos. The test was code-named “Trinity.” The accompanying picture shows Oppenheimer and General Groves at ground zero of the blast, the site of the high tower from which the bomb was detonated. Evidence of desert sand fused into glass by the intense heat abounds. The test was a complete technical success – vindication for the huge government outlay and the dedication on the part of so many who put their lives on hold by moving to the high desert of New Mexico and literally “willing” their work to success for fear of the Germans. By July of 1945, however, Germany was vanquished without having made any real progress toward an atomic bomb.

The World Would Never Be the Same

That first nuclear detonation signaled a necessary reset for much of human thought and behavior. Many events quickly followed that demonstrated the power of that statement. Of immediate impact was the abrupt termination of World War II, brought about by two atomic bombs successfully dropped on Japan just weeks after the first and only test of the device (Hiroshima, August 6, 1945; Nagasaki, August 9, 1945). The resulting destruction of these two cities accomplished what many thousands of invading U.S. troops might have taken months to complete – with terrible losses. The horrific effect of these two bombs on the people of Japan has been well documented since 1945. Many, including a significant number of those who worked on the development of these weapons protested that such weapons should never be used again. Once the initial flush of “success” passed, the man most responsible for converting scientific theory into a practical weapon of mass destruction quickly realized that the “nuclear genie” was irretrievably out of the bottle, never to be predictably and reliably restrained. Indeed, Russia shocked the world by detonating its first atomic bomb in 1949. The inevitable arms race that Oppenheimer foresaw had already begun… the day after Trinity.

The Matter of J. Robert Oppenheimer, the Man

J. Robert Oppenheimer had been under tremendous pressure as technical leader of the super-secret Manhattan project since being appointed by the military man in charge of the entire project, Army general Leslie Groves. Groves was a military man through and through, accustomed to the disciplined hierarchy of the service, yet he hand-picked as technical lead for the whole program the brilliant physicist and mercurial liberal intellectual, J. Robert Oppenheimer – the most unlikely of candidates. Oppenheimer’s communist wife and brother prompted the FBI to vigorously protest the choice. Groves got his way, however.

Groves’ choice of J. Robert Oppenheimer for the challenging and consuming task of technical leader on the project proved to be a stroke of genius on his part; virtually everyone who worked on the Manhattan Project agreed there was no-one but Oppenheimer who could have made it happen as it did.

“Oppie,” as he was known and referred to by many on the Manhattan Project, directed the efforts of hundreds of the finest scientific and engineering minds on the planet. Foreign-born Nobel prize winners in physics were very much in evidence at Los Alamos. Despite the formidable scientific credentials of such luminaries as Hans Bethe, I.I. Rabi, Edward Teller, Enrico Fermi, and Freeman Dyson, Oppenheimer proved to be their intellectual equal. Oppenheimer either already knew and understood the nuclear physics, the chemistry, and the metallurgy involved at Los Alamos, or he very quickly learned it from the others. His intellect was lightning-quick and very deep. His interests extended well beyond physics as evidenced by his great interest in French metaphysical poetry and his multi-lingual capability. Almost more incredible than his technical grasp of all the work underway at Los Alamos was his unanticipated ability to manage all aspects of this, the most daring, ambitious, and important scientific/engineering endeavor ever undertaken. People who knew well his scientific brilliance from earlier years were amazed at the overnight evolution of “Oppie, the brilliant physicist and academic” into “Oppie, the effective, efficient manager” and co-leader of the project with General Groves.

Indelibly imprinted upon my mind is the interview scene with famous Nobel Laureate Hans Bethe conducted by Jon Else, producer of The Day After Trinity. Bethe was Oppie’s pick to be group leader for all physics on the project. The following comments of Bethe, himself a giant in theoretical physics, cast a penetrating light on the intellectual brilliance of J. Robert Oppenheimer and his successful role in this, the most daring and difficult scientific project ever attempted:

– “He was a tremendous intellect. I don’t believe I have known another person who was quite so quick in comprehending both scientific and general knowledge.”
– “He knew and understood everything that went on in the laboratory, whether it was chemistry, theoretical physics, or machine-shop. He could keep it all in his head and coordinate it. It was clear also at Los Alamos, that he was intellectually superior to us.”

The work was long, hard, and often late into the night at Los Alamos for its two thousand residents, but there was a social life at Los Alamos, and, according to reports, Robert Oppenheimer was invariably the center of attention. He could and often did lead discussions given his wide-ranging knowledge …on most everything! Dorothy McKibben (seated on Oppenheimer’s right in the following picture) was the “Gatekeeper of Los Alamos” according to all who (necessarily) passed through her tiny Manhattan Project Office at 109 East Palace Avenue, Santa Fe, New Mexico. There, they checked-in and collected the credentials and maps required to reach the highly secured desert site of Los Alamos. Ms. McKibben was affluent in her praise of Oppenheimer: “If you were in a large hall, and you saw several groups of people, the largest groups would be hovering around Oppenheimer. He was great at a party, and women simply loved him and still do.”

The Nuclear Weapons Advantage Proves to be Short-Lived

What was believed in 1945 to represent a long term, decided military advantage for the United States turned out to be an illusion, much as Oppenheimer likely suspected. With the help of spies Klaus Fuchs at Los Alamos, Julius Rosenberg, and others, Russia detonated their first atomic bomb only four years later.

Oppenheimer knew better, because he understood the physics involved and that, once demonstrated, nuclear weapons would rapidly pose a problem for the world community. When interviewed years later at Princeton where he had been head of the Institute for Advanced Studies (and Albert Einstein’s “boss”) he is shown in The Day After Trinity responding to the question, “[Can you tell us] what your thoughts are about the proposal of Senator Robert Kennedy that President Johnson initiate talks with the view to halt the spread of nuclear weapons?” Oppenheimer replied rather impatiently, “It’s twenty years too late. It should have been done the day after Trinity.”

J. Robert Oppenheimer fully appreciated, on July 16, 1945, the dangers inherent in the nuclear genie let loose from the bottle. His fears were well founded. Within a few years after Los Alamos, talk surfaced of a new, more powerful bomb based on nuclear fusion rather than fission, nevertheless still in accordance with e = mc2. This became popularly known as the “hydrogen bomb.” Physicist Edward Teller now stepped forward to promote its development in opposition to Oppenheimer’s stated wish to curtail the further use and development of nuclear weapons.

Arguments raged over the “Super” bomb as it was designated, and Teller prevailed. The first device was detonated by the U.S. in 1952. A complex and toxic cocktail of Oppenheimer’s reticence toward development of the Super combined with the past communist leanings of his wife, brother Frank, and other friends led to the Atomic Energy Commission, under President Eisenhower, revoking Oppenheimer’s security clearance in 1954. That action ended any opportunity for Oppenheimer to even continue advising Washington on nuclear weapons policy. The Oppenheimer file was thick, and the ultimate security hearings were dramatic and difficult for all involved. As for the effect on J. Robert Oppenheimer, we have the observations of Hans Bethe and I.I. Rabi, both participants at Los Alamos and Nobel prize winners in physics:

– I.I. Rabi: “I think to a certain extent it actually almost killed him, spiritually, yes. It achieved just what his opponents wanted to achieve. It destroyed him.”
– Hans Bethe: “He had very much the feeling that he was giving the best to the United States in the years during the war and after the war. In my opinion, he did. But others did not agree. And in 1954, he was hauled before a tribunal and accused of being a security risk – a risk to the United States. A risk to betray secrets.”

Later, in 1964, attitudes softened and Edward Teller nominated Oppenheimer for the prestigious Enrico Fermi award which was presented by President Johnson. As I.I. Rabi observed, however, the preceding events had, for all intents and purposes, already destroyed him. Oppenheimer was a conflicted man with a brilliant wide-ranging intellect. While one might readily agree with Hans Bethe’s assessment that Oppenheimer felt he was “giving the best to the United States in the years during and after the war,” there is perhaps more to the story than a significantly patriotic motivation. Oppenheimer was a supremely competent and confident individual whose impatient nature was tinged with a palpable arrogance. These characteristics often worked to his disadvantage with adversaries and co-workers.
Then there was the suggestion that, in addition to his patriotic motives, Oppenheimer was seized by “the glitter and the power of nuclear weapons” and the unprecedented opportunity to do physics on a grand scale at Los Alamos, and those were also major motivations. Other colleagues on the project later confessed to feeling the glitter and power of nuclear weapons, themselves. A brilliant man of many contradictions was Oppenheimer – that much is certain. Also certain is the likelihood that the man was haunted afterward by misgivings concerning his pivotal role, whatever his motivations, in letting loose the nuclear genie. The sadness in his eyes late in life practically confirms the suspicion. That is the tragedy of J. Robert Oppenheimer. Triumph has a way of extracting its penalty, its pound of flesh. I can think of no better example than Oppenheimer.

Immediately upon hearing of the bombing of Hiroshima, Hans Bethe recalled, “The first reaction which we had was one of fulfillment. Now it has been done. Now the work which we have been engaged in has contributed to the war. The second reaction, of course, was one of shock and horror. What have we done? What have we done? And the third reaction: It shouldn’t be done again.”

Nuclear Weapons: The Current State and Future Outlook

In the headlines of today’s news broadcasts as I write this is the looming threat of North Korean nuclear-tipped intercontinental ballistic missiles. The North Koreans have developed and tested nuclear warheads and are currently test-launching long-range missiles which could reach the U.S. mainland, as far east as Chicago. Likewise, Iran is close to having both nuclear weapons and targetable intermediate-range missiles. Nuclear proliferation is alive and well on this earth.

To illustrate the present situation, consider one staple of the U.S. nuclear arsenal -the one megaton thermonuclear, or hydrogen, bomb with the explosive equivalent of just over one million tons of TNT. That explosive energy is fifty times that of the plutonium fission bomb which destroyed the city of Nagasaki, Japan (twenty-two thousand tons of TNT). The number of such powerful weapons in today’s U.S. and Russian nuclear stockpiles is truly staggering, especially when one considers that a single one megaton weapon could essentially flatten and incinerate the core of Manhattan, New York. Such a threat is no longer limited to a device dropped from an aircraft. Nuclear-tipped ICBMs present an even more ominous threat.

The surprise success of the first Russian earth-orbiting satellite, “Sputnik,” in 1957 had far more significance than the loss of prestige in space for the United States. Accordingly, the second monumental and historic U.S. government program – on the very heels of the Manhattan Project – was heralded by the creation of NASA in 1958 and its role in the race to the moon. President John F. Kennedy issued his audacious challenge in 1963 for NASA to regain lost technical ground in rocketry by being first to put a man on the moon …in the decade of the sixties – in less than seven years! Many in the technical community thought the challenge was simply “nuts” given the state of U.S. rocket technology in 1963. As with the then very-recent, incredibly difficult and urgent program to build an atomic bomb, the nation once again accomplished the near-impossible by landing Armstrong and Aldrin on the moon on July 20, 1969 – well ahead of the Russians. And it was important that we surpassed Russia in rocket technology, for our ICBMs, which are the key delivery vehicle for nuclear weapons and thus crucial to most of the U.S. strategic defense, were born of this country’s efforts in space.

“Fat Man,” the bomb used on Nagasaki – 22 kilotons of TNT

Photo: Paul Shambroom

B83 1 megaton hydrogen bombs…compact and deadly

The above picture of a man casually sweeping the warehouse floor in front of nearly ten megatons of explosive, destructive power, enough to level the ten largest cities in America gives one pause to reflect. On our visit to Los Alamos in 2003, I recall the uneasy emotions I felt merely standing next to a dummy casing of this bomb in the visitor’s center and reflecting on the awesome power of the “live” device. Minus their huge development and high “delivery” costs, such bombs are, in fact, very “cheap” weapons from a military point of view.

One conclusion: Unlike the man with the broom in the above picture, we must never casually accept the presence of these weapons in our midst. One mistake, one miscalculation, and nuclear Armageddon may be upon us. The collective angels of man’s better nature had better soon decide on a way to render such weapons unnecessary on this planet. Albert Einstein expressed the situation elegantly and succinctly:

“The unleashing of [the] power of the atom has changed everything but our modes of thinking and thus we drift toward unparalleled catastrophes.”

Under a brilliant New Mexico sky on October 16, 1945, the residents of the Los Alamos mesa gathered for a ceremony on J. Robert Oppenheimer’s last day as director of the laboratory. The occasion: The receipt of a certificate of appreciation from the Secretary of War honoring the contributions of Oppenheimer and Los Alamos.

In his remarks, Oppenheimer stated: “It is our hope that in years to come we may look at this scroll, and all that it signifies, with pride. Today, that pride must be tempered with a profound concern. If atomic bombs are to be added as new weapons to the arsenals of a warring world, or to the arsenals of nations preparing for war, then the time will come when mankind will curse the names of Los Alamos and Hiroshima. The peoples of the world must unite, or they will perish.”

In today’s world, each step along the path of nuclear proliferation brings humanity ever closer to the ultimate fear shared by J. Robert Oppenheimer and Albert Einstein. The world had best heed their warnings.

Is Life Becoming Too Complex? The Devil Is in the Details….! Can We Keep Up?

Details matter in this life, and they demand our attention – increasingly so. It is becoming impossible to live under illusions such as, “Details are confined mainly to the realm of specialists, like the computer programmer and the watchmaker.” The need for “attention to detail” on the part of everyman has never been greater.

patek-manual-movement1

I’ve been around for a while, now – over seventy-six years. Given all those years and, with the detached attitude of an impartial observer, I have reached some general conclusions regarding technology, time, and our quality of life, today.

Conclusion #1:
The opportunity for living a comfortable, meaningful, and rewarding life has never been greater – especially in this United States of America. We have so many choices today in this society, for better or for worse.

Conclusion #2:
The veracity of conclusion #1 is due to the positive influence of science and technology on our lives. Today’s information age has delivered the world, indeed, the universe (and Amazon, too) to our desktops and living rooms.

cyber-security1

It is true that computers and the internet are virtually indispensable, now.  However, the tools and the technology of the scientific/information age change continually, at an ever more rapid pace. Can we humans continue to keep pace with it all without making painful choices and sacrifices in our lives? Have computer problems ever driven you nuts? Do we have too many choices and opportunities now, thanks to the internet and stores like Walmart? How often have you shopped for something specific in the supermarket or on Amazon and been bewildered by the blizzard of choices which accost you thanks to high-tech marketing? Even choosing a hair shampoo poses a challenge for today’s shopper.

Conclusion #3:
Scientific knowledge and the rapid technological progress it spawns have become, universally, a 50/50 proposition for the human race. The reality suggests that for every positive gain in our lives brought about by our growing technology base, there is, unrelentingly, a negative factor to be overcome as well – a price to be paid. There is virtually a one-to-one correspondence at play – seemingly like an unspoken law of nature which always holds sway – much like the influence of gravitational attraction! In familiar parlance, “There is no free lunch in life: Rather, a price to paid for everything!”

The best example possible of this contention? Consider Einstein’s revelation in 1905 that mass and energy are interchangeable: e=mc2. This, the most famous equation in science, opened not only new frontiers in physics, but also the possibility of tremendous industrial power – at minimal cost. On the negative side, along with nuclear power plants, we now have nuclear weapons capable, in one day, of essentially ending life on this planet – thanks to that same simple equation. As for usable, nuclear-generated power, the potential price for such energy has been dramatically demonstrated in several notable cases around the globe over recent decades.

Need another example? How about the information technology which enables those handy credit cards which make purchasing “goodies” so quick and easy? On the negative side, how about the punishing cost of credit for account balances not promptly paid? More disturbing is the fact that such technology in the hands of internet criminals makes one’s private financial information so vulnerable, today. I found out the hard way, recently, that just changing your hacked credit card for a new one does not necessarily end your problems with unauthorized charges! The price in real money paid by society for foiling technology savvy ne-er do-wells is huge, in the billions of dollars every year.

Conclusion #4
Society, today, seems to discount the wisdom inherent in the old, familiar phrase, “The devil is in the details!” We are easily enticed by the lure of “user-friendly” computers and devices, and indeed, most are generally well-designed to be just that – considering what they can do for us. But today’s scientists and engineers fully understand the profundity of that “devil is in the details” contention as they burrow deeper and deeper into nature’s secrets. The lawyer and the business man fully understand the message conveyed given the importance of carefully reading “the fine print” embedded in today’s legal documents and agreements. How many of us take (or can even afford) the time to read all the paperwork/legalese which accompanies the purchase of a new automobile or a house! Increasingly, we seem unable/unwilling to keep up with the burgeoning demands imposed by the exponential growth of detail in our lives, and that is not a healthy trend.

I am convinced and concerned that many of us are in way over our heads when it comes to dealing with the more sophisticated aspects of today’s personal computers, and these systems are becoming increasingly necessary for families and seniors merely trying to getting by in today’s internet world. Even those of us with engineering/computer backgrounds have our hands full keeping up with the latest developments and devices: I can personally attest to that! The devil IS in the details, and the details involved in computer science are growing exponentially. Despite the frequently quoted phrase “user-friendly interface,” I can assure you that the complexity lurking just below that user-friendly, top onion-skin-layer of your computer or iPhone is very vast, indeed, and that is why life gets sticky and help-entities like the Geek Squad will never lack for stymied customers.

Make no mistake: It is not merely a question of “Can we handle the specific complexities of operating/maintaining our personal computers?” Rather, the real question is, “Can we handle all the complexities/choices which the vast capabilities of the computer/internet age have spawned?”  

Remember those “user manuals?” Given the rapid technological progress of recent decades, the degree of choice/complexity growth is easily reflected by the growing size of user manuals, those how-to instructions for operating our new autos, ovens, cooktops, washing machines, and, now, phones and computers. Note: The “manuals” for phones and computers are now so complex that printed versions cannot possibly come with these products. Ironically, there are virtually no instructions “in the box.” Rather, many hundreds of data megabytes now construct dozens of computer screens which demonstrate the devices’ intricacies on-line. These software “manuals” necessarily accommodate the bulk and the constantly changing nature of the product itself. Long gone are the old “plug it in and press this button to turn it on” product advisories. More “helpful” product options result in significantly more complexity! Also gone are the “take it in for repair” days. My grandfather ran a radio repair shop in Chicago seventy years ago. Today, it is much cheaper and infinitely more feasible to replace rather than repair anything electronic.

An appropriate phrase to describe today’s burgeoning technologies is “exponential complexity.” What does that really mean and what does it tell us about our future ability to deal with the coming “advantages” of technology which will rain down upon us? I can illustrate what I mean.

Let us suppose that over my seventy-six years, the complexity of living in our society has increased by 5% per year – a modest assumption given the rapid technological gains in recent decades. Using a very simple “exponential” math calculation, at that rate, life for me today is over 40 times more complex than it was for my parents the day I was born!

To summarize: Although many of the technological gains made over recent decades were intended to open new opportunities and to make life easier for us all, they have imposed upon us a very large burden in the form of the time, intelligence, and intellectual energy required to understand the technology and to use it both efficiently and wisely. Manual labor today is much minimized; the intellectual efforts required to cope with all the newest technology is, indeed, very significant and time-consuming. There is a price to be paid…for everything.

The major question: At what point does technology cease to help us as human beings and begin to subjugate us to the tyranny of its inherent, inevitable and necessary details? The realm in which the details live is also home to the devil.

The devil tempts. The burgeoning details and minutia in today’s society act to corrode our true happiness. We should be cautious lest we go too far up the technology curve and lose sight of life’s simpler pleasures… like reading a good book in a quiet place – cell phones off and out of reach. The noise and bustle of Manhattan can appear endlessly intoxicating to the visitor, but such an environment is no long-term substitute for the natural sounds and serenity of nature at her finest. The best approach to living is probably a disciplined and wisely proportioned concoction of both worlds.

The above recipe for true happiness involves judicious choices, especially when it comes to technology and all the wonderful opportunities it offers. Good choices can make a huge difference. That is the ultimate message of this post.

As I write this, I have recently made some personal choices: I am redoubling my efforts to gain a more solid grasp of Windows 10 and OS X on my Mac. Despite the cautionary message of this post regarding technology, I see this as an increasingly necessary (and interesting) challenge in today’s world. This is a choice I have made. I have, however, put activities like FaceBook aside and have become much more choosey about time spent on the internet.

My parting comment and a sentiment which I hope my Grandkids will continue to heed: “So many good books; so little quality time!”

Marking the Passage of Time: The Elusive Nature of the Concept

Nature presents us with few mysteries more tantalizing than the concept of “time.” Youngsters, today, might not think the subject worthy of much rumination: After all, one’s personal iPhone can conveniently provide the exact time at any location on our planet.

thumb_IMG_3884_1024

Human beings have long struggled with two fundamental questions regarding time:

  1. What are the fundamental units in nature used to express time? More simply, what constitutes one second of time? How is one second determined?
  2. How can we “accurately” measure time using the units chosen to express it?

The simple answers for those so inclined might be: We measure time in units of seconds, minutes, hours, and days, etc., and we have designed carefully constructed and calibrated clocks to measure time! That was easy, wasn’t it?

The bad news: Dealing with the concept of time is not quite that simple.
The good news: The fascinating surprises and insights gained from taking a closer, yet still cursory, look at “time” are well worth the effort to do so. To do the subject justice requires far more than a simple blog post – scholarly books, in fact – but my intent, here, is to illustrate how fascinating the concept of time truly is.

Webster’s dictionary defines time as “a period or interval…the period between two events or during which ‘something’ exists, happens, or acts.”

For us humans the rising and setting of the sun – the cycle of day and night is a “something” that happens, repeats itself, and profoundly effects our existence. It is that very cycle which formed our first concept of time. The time required for the earth to make one full revolution on its axis is but one of many repeating natural phenomena, and it was, from the beginning of man’s existence, uniquely qualified to serve as the arbitrary definition of time measurement. Other repeatable natural phenomena could have anchored our definition of time: For instance, the almost constant period of the earth’s rotation around the sun (our year) or certain electron- jump vibrations at the atomic level could have been chosen except that such technology was unknown and unthinkable to ancient man. In fact, today’s universally accepted time standard utilizes a second defined by the extraordinarily stable and repeatable electron jumps within Cesium 133 atoms – the so-called atomic clock which has replaced the daily rotation of the earth as the prime determinant of the second.

Why use atomic clocks instead of the earth’s rotation period to define the second? Because the earth’s rotational period varies from month to month due to the shape of our planet’s orbit around the sun. Its period also changes over many centuries as the earth’s axis “precesses” (a slowly rotating change of direction) relative to the starry firmament, all around. By contrast, atomic clocks are extremely regular in their behavior.

Timekeepers on My Desk: From Drizzling Sand to Atomic Clocks!

I have on my desk two time-keepers which illustrate the startling improvement in time-keeping over the centuries. One is the venerable hour-glass: Tip it over and the sand takes roughly thirty minutes (in mine) to drizzle from top chamber to bottom. The other timekeeper is one of the first radio-controlled clocks readily available – the German-built Junghans Mega which I purchased in 1999. It features an analog display (clock-hands, not digital display) based on a very accurate internal quartz electronic heartbeat: The oscillations of its tiny quartz-crystal resonator. Even the quartz oscillator may stray from absolute accuracy by as much as 0.3 seconds per day in contrast to the incredible regularity of the cesium atomic clocks which now define the international second as 9,192,631,770 atomic “vibrations” of cesium 133 atoms – an incredibly stable natural phenomena. The Junghans Mega uses its internal radio capability to automatically tune in every evening at 11 pm to the atomic clocks operating in Fort Collins, Colorado. Precise time-sync signals broadcast from there are utilized to “reset” the Mega to the precise time each evening at eleven.

I love this beautifully rendered German clock which operates all year on one tiny AA battery and requires almost nothing from the operator in return for continuously accurate time and date information. Change the battery once each year and its hands will spin to 12:00 and sit there until the next radio query to Colorado. At that point, the hands will spin to the exact second of time for your world time zone, and off it goes….so beautiful!

Is Having Accurate Time So Important?
You Bet Your Life…and Many Did!

Yes, keeping accurate time is far more important than not arriving late for your doctor’s appointment! The fleets of navies and the world of seagoing commerce require accurate time…on so many different levels. In 1714, the British Admiralty offered the then-huge sum of 20,000 pounds to anyone who could concoct a practical way to measure longitude at sea. That so-called Longitude Act was inspired by a great national tragedy involving the Royal Navy. On October 22, 1707, a fleet of ships was returning home after a sojourn at sea. Despite intense fog, the flagship’s navigators assured Admiral Sir Cloudisley Shovell that the fleet was well clear of the treacherous Scilly Islands, some twenty miles off the southwest coast of England. Such was not the case, however, and the admiral’s flagship, Association, struck the shoals first, quickly sinking followed by three other vessels. Two thousand lives were lost in the churning waters that day. Of those who went down, only two managed to wash ashore alive. One was Sir Cloudesley Shovell. As an interesting aside, the story has it that a woman combing the beach happened across the barely alive admiral, noticed the huge emerald ring on his finger, and promptly lifted it, finishing him off in the process. She confessed the deed some thirty years later, offering the ring as proof.

The inability of seafarers to navigate safely by determining their exact location at sea was of great concern to sea powers like England who had a great investment in both their fleet of fighting ships and their commerce shipping. A ship’s latitude could be quite accurately determined on clear days by “shooting” the height of the sun above the horizon using a sextant, but its longitude position was only an educated guess. The solution to the problem of determining longitude-at-sea materialized in the form of an extremely accurate timepiece carried aboard ship and commonly known ever since as a “chronometer.” Using such a steady, accurate time-keeper, longitude could be calculated.

For the details, I recommend Dava Sobel’s book titled “Longitude.” The later, well-illustrated version is the one to read. In her book, the author relates the wonderfully improbable story of an English country carpenter who parlayed his initial efforts building large wooden clocks into developing the world’s first chronometer timepiece accurate enough to solve the “longitude problem.” After frustrating decades of dedicated effort pursuing both the technical challenge and the still-to-be-claimed prize money, John Harrison was finally able to collect the 20,000 pound admiralty award.

Why Mention Cuckoo Clocks? Enter Galileo and Huygens

Although the traditional cuckoo clock from the Black Forest of Germany does not quite qualify as a maritime chronometer, its pendulum principle plays an historical role in the overall story of time and time-keeping. With a cuckoo clock or any pendulum clock, the ticking rate is dependent only on the effective length of the pendulum, and not its weight or construction. If a cuckoo clock runs too fast, one must lower the typical wood-carved leaf cluster on the pendulum shaft to increase the pendulum period and slow the clock-rate.

No less illustrious a name than Galileo Galilei was the first to propose the possibilities of the pendulum clock in the early 1600’s. Indeed, Galileo was the first to understand pendulum motion and, with an assistant late in life, produced a sketch of a possible pendulum clock. A few decades later, in 1658, the great French scientist, Christian Huygens, wrote his milestone book of science and mathematics, Horologium Oscillatorium, in which he presented a detailed mathematical treatment of pendulum motion-physics. By 1673, Huygens had constructed the first pendulum clock following the principles set forth in his book.

thumb_IMG_3908_1024

In 1669, a very notable scientific paper appeared in the seminal English journal of science, The Philosophical Transactions of the Royal Society. That paper was the first English translation of a treatise originally published by Christian Huygens in 1665. In his paper, Huygens presents “Instructions concerning the use of pendulum-watches for finding the longitude at sea, together with a journal of a method for such watches.” The paper outlines a timekeeping method using the “equation of time” (which quantifies the monthly variations of the earth’s rotational period) and capitalizes on the potential accuracy of his proposed pendulum timekeeper. The year 1669 in which Huygens’ paper on finding the longitude-at-sea appeared in The Philosophical Transactions preceded by thirty-eight years the disastrous navigational tragedy of the British fleet and Sir Cloudesley Shovell in 1707.

As mentioned earlier, John Harrison was the first to design and construct marine chronometers having the accuracy necessary to determine the longitude-at-sea. After many years of utilizing large balanced pendulums in his bulky designs, Harrison’s ultimate success came decades later in the form of a large “watch” design which utilized the oscillating balance-wheel mechanism, so familiar today, rather than the pendulum principle. Harrison’s chronometer taxed his considerable ingenuity and perseverance to the max. The device had to keep accurate time at sea – under the worst conditions imaginable ranging from temperature and humidity extremes to the rolling/heaving motion of a ship at sea

The Longitude Act of 1714 specified that less than two minutes of deviation from true time is required over a six-week sea voyage to permit a longitude determination to within one-half degree of true longitude (35 miles at the equator). Lost time, revenue, and human lives were the price to be paid for excessive timekeeper inaccuracies.

Einstein and Special Relativity: Speeding Clocks that Run Slow

Albert Einstein revolutionized physics in 1905 with his special theory of relativity. Contrary to the assumptions of Isaac Newton, relativity dictates that there is no absolute flow of time in the universe – no master clock, as it were. An experiment will demonstrate what this implies: Two identical cesium 133 atomic clocks (the time-standard which defines the “second”) will run in virtual synchronization when sitting side by side in a lab. We would expect that to be true. If we take one of the two and launch it in an orbital space vehicle which then circles the earth at 18,000 miles per hour, from our vantage point on earth, we would observe that the orbiting clock now runs slightly slower than its identical twin still residing in our lab, here on earth. Indeed, upon returning to earth and the lab after some period of time spent in orbit, the elapsed time registered by the returning clock will be less than that of its twin which stayed put on earth even though its run-rate again matches its stationary twin! In case you are wondering, this experiment has indeed been tried many times. Unerringly, the results of such tests support Einstein’s contention that clocks moving with respect to an observer “at rest” will always run slower (as recorded by the observer) than they would were they not moving relative to the observer. Since the constant speed of light is 186,000 miles per second based on the dictates of relativity, the tiny time dilation which an orbital speed of 18,000 miles per hour would produce could only be observed using such an incredibly stable, high resolution time-source as an atomic clock. If two identical clocks passed each other traveling at one-third the speed of light, the “other” clock would seem to have slowed by 4.6%. At one-tenth the speed of light, the “other” clock slows by only 0.5%. This phenomena of slowing clocks applies to any timekeeper – from atomic clocks to hourglasses. Accordingly, the effect is not related to any construction aspects of timekeepers, only to our limitation “to observe” imposed by the non-infinite, constant speed of light dictated by relativity.

For most practical systems that we deal with, here on earth, relative velocities between systems are peanuts compared to the speed of light and the relativistic effects, although always present, are so small as to be insignificant, usually undetectable. There are important exceptions, however, and one of the most important involves the GPS (Global Positioning System). Another exception involves particle accelerators used by physicists. The GPS system uses earth-orbiting satellites traveling at a tiny fraction of the speed of light relative to the earth’s surface. In a curious demonstration of mathematical déjà vu when recalling the problem of finding the longitude-at-sea, even tiny variations in the timing signals sent between the satellites and earth can cause our position information here on earth to off by many miles. With such precise GPS timing requirements, the relativistic effect of time dilation on orbiting clocks – we are talking tiny fractions of a second! – would be enough to cause position location errors of many miles! For this reason, relativity IS and must be taken into account in order for the GPS system to be of any practical use whatsoever!

Is it not ironic that, as in the longitude-at-sea problem three centuries ago, accurate time plays such a crucial role in today’s satellite-based GPS location systems?

I hope this post has succeeded in my attempt to convey to you, the reader, the wonderful mysteries and importance of that elusive notion that we call time.

Finally, as we have all experienced throughout our lives, time is short and….

TIME AND TIDE WAIT FOR NO MAN

 

Relativity and the Birth of Quantum Physics: Two Major Problems for Physics in the Year 1900

Max-Planck-[1]In the year 1900, two critical questions haunted physicists, and both involved that elusive entity, light. The ultimate answers to these troublesome questions materialized during the dawn of the twentieth century and resulted in the most recent two of the four major upheavals in the history of physics. Albert Einstein was responsible for the third of those four upheavals in the form of his theory of special relativity which he published in 1905. Einstein’s revolutionary theory was his response to one of those two critical questions facing physics in the year 1900. A German scientist named Max Planck addressed the second critical question while igniting the fourth great upheaval in the history of physics. Max Planck began his Nobel Prize-winning investigation into the nature of heat/light radiation in the year 1894. His later discovery of the quantized nature of such radiation gave birth to the new realm of quantum physics which, in turn, led to a new picture of the atom and its behavior. Planck’s work directly addressed the second critical question nagging science in 1900. The aftermath of his findings ultimately changed physics and man’s view of physical reality, forever.

What were the two nagging problems in physics in 1900?

The nature of light and its behavior had long challenged the best minds in physics. For example: Is light composed of “particles,” or does it manifest itself as “waves” travelling through space? By the eighteenth century, two of science’s greatest names had voiced their opinions. Isaac Newton said that light is “particle” in nature. His brilliant French contemporary, Christian Huygens, claimed that light is comprised of “waves.”

Newton_Kneller_ 1702_1         huygens[1]

                  Isaac Newton                                                      Christian Huygens

By 1865, the great Scottish physicist, James Clerk Maxwell, had deduced that light, indeed, acted as an electromagnetic wave traveling at a speed of roughly 186,000 miles per second! Maxwell’s groundbreaking establishment of an all-encompassing electromagnetic theory represents the second of the four major historical revolutions in physics of which we speak. Ironically, this second great advance in the history of physics with its theoretically established speed of light led directly to the first of the two nagging issues facing physics in 1900. To understand that dilemma, a bit of easily digestible background is in order!

Maxwell began by determining that visible light is merely a small slice of the greater electromagnetic wave frequency spectrum which, today, includes radio waves at the low frequency end and x-rays at the high frequency end. Although the speed of light (thus all electromagnetic waves) had been determined fairly accurately by experiments made by others prior to 1865, Maxwell’s ability to theoretically predict the speed of light through space using the mathematics of his new science of electrodynamics was a tribute to his supreme command of physics and mathematics. The existence of Maxwell’s purely theoretical (at that time) electromagnetic waves was verified in 1887 via laboratory experiment conducted by the German scientist, Heinrich Hertz.

The first of the two quandaries on physicist’s minds in 1900 had been brewing during the latter part of the nineteenth century as physicists struggled to define the “medium” through which Maxwell’s electromagnetic waves of light propagated across seemingly empty space. Visualize a small pebble dropped into a still pond: Its entry into the water causes waves, or ripples, to propagate circularly from the point of disturbance. These “waves” of water represent mechanical energy being propagated across the water. Light is also a wave, but it propagates through space and carries electromagnetic energy.

Here is the key question which arose from Maxwell’s work and so roiled physics: What is the nature of the medium in presumably “empty space” which supports electromagnetic wave propagation…and can we detect it? Water is the obvious medium for transmitting the mechanical energy waves created by a pebble dropped into it. Air is the medium which is necessary to propagate mechanical sound-pressure waves to our ears – no air, no sound! Yet light waves travel readily through “empty space” and vacuums!

Lacking any evidence concerning the nature of a medium suitable for electromagnetic wave propagation, physicists nevertheless came up with a name for it….the “ether,” and pressed on to learn more about its presumed reality. Clever but futile attempts were made to detect the “ether sea” through which light appears to propagate. The famous Michelson-Morley experiments of 1881 and 1887 conclusively failed to detect ether’s existence. Science was forced to conclude that there is no detectable/describable medium! Rather, the cross-coupled waves of Maxwell’s electric and magnetic fields which comprise light (and all electromagnetic waves) “condition” the empty space of a perfect vacuum in such a manner as to allow the waves to propagate through that space. In expressing the seeming lack of an identifiable transmission medium and what to do about it, the best advice to physicists seemed: “It is what it is….deal with it!”

“Dealing with it” was easier said than done, because one huge problem remained. Maxwell and his four famous “Maxwell’s equations” which form the framework for all electromagnetic phenomena calculate one and only ONE value for the speed of light – everywhere, for all observers in the universe. One single value for the speed of light would have worked for describing its propagation speed relative to an “ether sea,” but there is no detectable ether sea!

The Great “Ether Conundrum” – Addressed by Einstein’s Relativity

In the absence of an ether sea through which to measure the speed of light as derived by Maxwell, here is the problem which results, as illustrated by two distant observers, A and B, who are rapidly traveling toward each other at half the speed of light: How can a single, consistent value for the speed of light apply both to the light measured by observer A as it leaves his flashlight (pointed directly at observer B) and observer B who will measure the incoming speed of the very same light beam as he receives it? Maxwell’s equations imply that each observer must measure the same beam of light at 186,000 miles per second, measured with respect to themselves and their surroundings – no matter what the relative speed between the two observers. This made no sense and represented a very big problem for physicists!

The Solution and Third Great Revolution in Physics:
 Einstein’s Relativity Theories

As already mentioned, the solution to this “ether dilemma” involving the speed of light was provided by Albert Einstein in his 1905 theory of special relativity – the third great revolution in physics. Special relativity completely revamped the widely accepted but untenable notions of absolute space and absolute time – holdovers from Newtonian physics – and time and space are the underpinnings of any notion/definition of “speed.” Einstein showed that a strange universe of slowing clocks and shrinking yardsticks is required to accommodate the constant speed of light for all observers regardless of their relative motion to each other. Einstein declared the constant speed of light for all observers to be a new, inviolable law of physics. Furthermore, he proved that nothing can travel faster than the speed of light.

The constant speed of light for all observers coupled with Einstein’s insistence that there is no way to measure one’s position or speed/velocity through empty space are the two notions which anchor special relativity and all its startling ramifications.

 The Year is 1900: Enter Max Planck and Quantum Physics –
The Fourth Great Revolution in Physics

The second nagging question facing the physics community in 1900 involved the spectral nature of radiation emanating from a so-called black-body radiator as it is heated to higher and higher temperatures. Objects that are increasingly made hotter emanate light whose colors change from predominately red to orange to white to a bluish color as the temperature rises. A big problem in 1900 was this: There is little experimental evidence indicating large levels of ultraviolet radiation produced at high temperatures – a situation completely contrary to the theoretical predictions of physics based on our scientific knowledge in the year 1900. Physics at that time predicted a so-called “ultraviolet catastrophe” at high temperatures generating huge levels of ultraviolet radiation – enough to damage the eyes with any significant exposure. The fact that there was no evidence of such levels of ultraviolet radiation was, in itself, a catastrophe for physics because it called into serious question our knowledge and assumptions of the atomic/molecular realm.

The German physicist, Max Planck, began tackling the so-called “ultraviolet catastrophe” disconnect as early as 1894. Using the experimental data available to him, Planck attempted to discern a new theory of spectral radiation for heated bodies which would match the observed results. Planck worked diligently on the problem but could not find a solution by working along conventional lines.

Finally, he explored an extremely radical approach – a technique which reflected his desperation. The resulting new theory matched the empirical results perfectly!

When Planck had completed formulation of his new theory in 1900, he called his son into his study and stated that he had just made a discovery which would change science forever – a rather startling proclamation for a conservative, methodical scientist. Planck’s new theory ultimately proved as revolutionary to physics as was Einstein’s theory of relativity which would come a mere five years later.

Max Planck declared that the radiation energy emanating from heated bodies is not continuous in nature; that is, the energy radiates in “bundles” which he referred to as “quanta.” Furthermore, Planck formulated the precise numerical values of these bundles through his famous equation which states:

 E = h times Frequency

where “h” is his newly-declared “Planck’s constant” and “Frequency” is the spectral frequency of the radiation being considered. Here is a helpful analogy: The radiation energy from heated bodies was always considered to be continuous – like water flowing through a garden hose. Planck’s new assertion maintained that radiation comes in bundles whose “size” is proportional to the frequency of radiation being considered. Visualize water emanating from a garden hose in distinct bursts rather than a continuous flow! Planck’s new theory of the energy “quanta” was the only way he saw fit to resolve the existing dilemma between theory and experiment.

The following chart reveals the empirical spectral nature of black-body radiation at different temperatures. Included is a curve which illustrates the “ultraviolet catastrophe” at 5000 degrees Kelvin predicted by (1900) classical physics. The catastrophe is represented by off-the-chart values of radiation in the “UV” range of short wavelength (high frequency).

Black_body copy

This chart plots radiated energy (vertical axis) versus radiation wavelength (horizontal axis) plotted for each of three temperatures in degrees K (degrees Kelvin). The wavelength of radiation is inversely proportional to the frequency of radiation. Higher frequency ultraviolet radiation (beyond the purple side of the visible spectrum) is thus portrayed at the left side of the graph (shorter wavelengths).

Note the part of the radiation spectrum which consists of frequencies in the visible light range. The purple curve for 5000 degrees Kelvin has a peak radiation “value” in the middle of the visible spectrum and proceeds to zero at higher frequencies (shorter wavelengths). This experimental purple curve is consistent with Planck’s new theory and is drastically different from the black curve on the plot which shows the predicted radiation at 5000 degrees Kelvin using the scientific theories in place prior to 1900 and Planck’s revolutionary findings. Clearly, the high frequency (short wavelength) portion of that curve heads toward infinite radiation energy in the ultraviolet range – a non-plausible possibility. Planck’s simple but revolutionary new radiation law expressed by E = h times Frequency served to perfectly match theory with experiment.

Why Max Planck Won the 1918 Nobel Prize
in Physics for His Discovery of the Energy Quanta

One might be tempted to ask why the work of Max Planck is rated so highly relative to Einstein’s theories of relativity which restructured no less than all of our assumptions regarding space and time! Here is the reason in a nutshell: Planck’s discovery led quickly to the subsequent work of Neils Bohr, Rutherford, De Broglie, Schrodinger, Pauli, Heisenberg, Dirac, and others who followed the clues inherent in Planck’s most unusual discovery and built the superstructure of atomic physics as we know it today. Our knowledge of the atom and its constituent particles stems directly from that subsequent work which was born of Planck and his discovery. The puzzling non-presence of the “ultraviolet catastrophe” predicted by pre-1900 physics was duly answered by the ultimate disclosure that the atom itself radiates in discrete manners thus preventing the high ultraviolet content of heated body radiation as predicted by the old, classical theories of physics.

Albert Einstein in 1905: The Photoelectric Effect –
Light and its Particle Nature

Published in the same 1905 volume of the German scientific journal, Annalen Der Physik, as Einstein’s revolutionary theory of special relativity, was his paper on the photoelectric effect. In that paper, Einstein described light’s seeming particle behavior. Electrons were knocked free of their atoms in metal targets by bombarding the targets with light in the form of energy bundles called “photons.” These photons were determined by Einstein to represent light energy at its most basic level – as discrete bundles of light energy. The governing effect which proved revolutionary was the fact that the intensity of light (the number of photons) impinging on the metal target was not the determining factor in their ability to knock electrons free of the target: The frequency of the light source was the governing factor. Increasing the intensity of light had no effect on the liberation of electrons from their metal atoms: The frequency of the light source had a direct and obvious effect. Einstein proved that these photons, these bundles of light energy which acted like bullets for displacing electrons from their metal targets, have discrete energies whose values depend only on the frequency of the light itself. The higher the frequency of the light, the greater is the energy of the photons emitted. As with Planck’s characterization of heat radiation from heated bodies, photon energies involve Planck’s constant and frequency. Einstein’s findings went beyond the quanta energy conceptualizations of Planck by establishing the physical reality of light photons. Planck interpreted his findings on energy quanta as atomic reactions to stimulation as opposed to discrete realities. Einstein’s findings earned him the 1921 Nobel Prize in physics for his paper on the photoelectric effect….and not for his work on relativity!

Deja Vu All Over Again: Is Light a Particle or a Wave?

My EinsteinAlong with Planck, Einstein is considered to be “the father of quantum physics.” The subsequent development by others of quantum mechanics (the methods of dealing with quantum physics) left Einstein sharply skeptical. For one, quantum physics and its principle of particle/wave duality dictates that light behaves both as particle and wave – depending on the experiment conducted. That, in itself, would trouble a physicist like Einstein for whom deterministic (cause and effect) physics was paramount, but there were other, startling ramifications of quantum mechanics which repulsed Einstein. The notion that events in the sub-atomic world could be statistical in nature rather than cause-and-effect left Einstein cold. “God does not play dice with the universe,” was Einstein’s opinion. Others, like the father of atomic theory, Neils Bohr, believed the evidence undeniable that nature is governed at some level by chance.

In one of the great ironies of physics, Einstein, one of the two fathers of quantum physics, felt compelled to abandon his brain-child because of philosophical/scientific conflicts within his own psyche. He never completely came to terms with the new science of quantum physics – a situation which left him somewhat outside the greater mainstream of physics in his later years.

Like Einstein’s relativity theories, quantum physics has stood the test of time. Quantum mechanics works, and no experiments have ever been conducted to prove the method wrong. Despite the truly mysterious realm of the energy quanta and quantum physics, the science works beautifully. Perhaps Einstein was right: Quantum mechanics, as currently formulated, may work just fine, but it is not the final, complete picture of the sub-atomic world. No one could appreciate that possibility in the pursuit of physics more than Einstein. After all, it was his general theory of relativity in 1916 which replaced Isaac Newton’s long-held and supremely useful force-at-a-distance theory of gravity with the more complete and definitive concept of four-dimensional, curved space-time.

By the way, and in conclusion, it is Newton’s mathematics-based science of dynamics (the science of force and motion) that defines the very first major upheaval in the history of physics – as recorded in his masterwork book from 1687, the Principia – the greatest scientific book ever written. Stay tuned.

My Favorite Word: “Perspective”

I love this word, “perspective.” Often, I have stopped to think why that is. After a long time pondering the question, I have some answers. The best of these is the rationale that mature perspective frees us from the darker side of our human condition. The famous artist, Albrecht Durer, realized the importance of perspective in artistic renderings and studiously investigated its application to his drawings. Here is one of his most reproduced studies on perspective:

Durer-Artist drawing a Lute 1525[1]

As important as it is to art, a realistic and comforting perspective is crucial to our personal well-being. Human happiness and contentment are constantly challenged by the realities of day-to-day living on this planet. For me, life is akin to a beautiful rosebush in full bloom – an entity inherently wonderful and beautiful in the long-view, but one covered with sharp thorns which can inflict pain and suffering if not approached carefully. The gardeners in my family, Ruth, Linda, and Ginny fully appreciate that reality! The challenge, then, is learning how to handle this beautiful gift from nature (how to live with the vicissitudes of life) without getting hurt in the process; this is where a clear vision (perspective) comes into play.

Rose-Bouquet[1]

IMG_2111 What simpler and better example of perspective is there than the familiar question, “Do you see your glass half empty or half full?” Pondering the answer forces us to realize that conditions in our lives could be worse than they are – at least the glass is not empty. Choosing the more positive outlook has been proven beneficial to us humans, both psychologically, and  physically. Those of us who have seriously tried yoga, with its meditative overtones, can vouch for the relaxing, healing aspects of mind-conditioning which is central to the practice.

 

As I grow older, I see life and the world in a different light – from a new perspective! When younger, I was much concerned with what other people thought – about me, about what I had done or not done in life, about social convention. Life has gently nudged me to honestly evaluate my strengths and weaknesses…and to accept the verdict, for better or worse. I feel a sense of freedom which stems from that attitude and the admonition to “know thyself.” Today, I visualize a much larger picture, a wider perspective on life and living. What do you see in your everyday life?

Eyes_1C

I strongly believe that children should be nurtured early-on and raised never to take people and things in their lives for granted. For youngsters, life naturally tends to be all about the events of the day at-hand and their immediate social relationships. Often, life seems aptly termed a “rat-race” as young people (and adults) strive to find their place in the pack of runners while struggling at the same time to discover their personal identities. So much time and energy are spent striving to be recognized and accepted in our society, and that is normal and inevitable – the way we are biologically programmed to coexist and to survive and thrive. I maintain that life offers more than that limited view and existence: Our “glass” can be fuller than that if only we can see the larger picture through a wider perspective.

And, what IS the larger picture? For me, it encompasses an acceptance of the fact that we are but one of many on this earth, that there are many things about ourselves and our fate that we cannot control, and that few of us will be remembered three generations down the line. What to do then? See the glass half-full and proceed to live life with a sense of amusement concerning our human foibles and vulnerabilities while maintaining a vision of the larger picture. While always cognizant of the comfort afforded by the larger picture, living in the present and enjoying each day to the fullest seems to be the secret of happy living.

Personally, I strive not to take myself too seriously, but to honestly evaluate my strengths and weaknesses and work upon improving the latter. So important: While being your own best critic, don’t be too hard on yourself. Give yourself a break now and then and relish your real accomplishments along the way! Change the things you can change, accept the things you cannot change, and be wise enough to know the difference. Amen! A larger awareness of our universe and our human place in it proves most comforting to me. I love the myriad of wise quotations attributed to the great scientist, Albert Einstein, and this is one of my favorites – a statement of his personal perspective and religiousness:

“The most beautiful emotion we can experience is the mysterious. It is the fundamental emotion that stands at the cradle of all true art and science. He to whom this emotion is a stranger, who can no longer stand rapt in awe, is as good as dead, a snuffed-out candle. To sense that behind anything that can be experienced there is something that our minds cannot grasp, whose beauty and sublimity reaches us only indirectly: this is religiousness. In this sense, and in this sense only, I am a devoutly religious man.”

We are well-advised to look around at our world and to see past its ugly aspects – its thorns – and see the beauty, the wonder, and the awe inherent in the universe. Miracles abound everywhere one looks, including the image of that man or women in your mirror. When one steps beyond society’s pre-occupation with the “cult of human personality,” it appears amazing that a biologically-based organism – a fleshy bag of bones like us – can, today, live routinely for more than seventy years and travel all over the planet, (often at 35,000 feet) in order to see natural and man-made wonders in far-away places. Actually, one need not go anywhere to view such wonders: Just look around you right now, wherever you are. Also amazing is the fact that, through science and its brain-child, technology, we know more and more about who we are, what we are, and where we are than ever before. Still a challenge and part of the great mystery: Why we are and where we are going.

Sidling-up ever closer to the ultimate mysteries of which Einstein spoke constitutes, for many of us, a new perspective on life, living, and creation itself. It all borders on the religious sense which Einstein experienced, and it all makes for such a liberating viewpoint, as well.

Falling Feathers and Pennies: Did You Know This?

If you simultaneously release a feather and a penny, side-by-side, which will hit the ground first?  If you say, “The penny, of course,” the science of physics has news for you. That is not always true! Inherently, they reach the ground at the same time. Read on to understand why!

Feather & Penny Falling_1

By the year 1604, Galileo Galilei had deciphered a long-standing mystery of physics: “The law of fall.” Until that time, “natural philosophers,” as scientists were called, had puzzled for centuries over the question: “Precisely how do physical bodies of mass like a feather and a penny fall to earth under the influence of gravity.” It was clear that objects seemed to fall faster the longer they fell – but according to what mathematical principles?

Do heavier objects fall faster than light ones? It would intuitively seem so! Is the instantaneous velocity of a falling object proportional to the distance traversed during fall – or perhaps to the time duration of fall?

By way of clever experimentation and logical deductions, Galileo deduced the law of falling bodies under the influence of gravity:

Every body subject to fall inherently accelerates at a
fixed rate as it falls, irrespective of its weight (mass).

With a fixed, equal rate of acceleration as decreed by the law of fall, motion physics tells us that two bodies released from rest will fall side-by-side all the way down. The law also dictates that objects in free-fall reach instantaneous velocities which are proportional to the time duration of fall from a rest condition. For objects here on earth, a falling object adds slightly less than 32.2 feet per second to its velocity for each additional second of fall.

The wording of “the law of fall” contains two important implications. First, the key word, “inherently,” implies that the falling body is subject only to a constant force of gravitational attraction. Second, the term “fixed” rate tells us that the acceleration is a fixed numerical value for all bodies of mass… in a given gravitational field. The earth’s gravity is essentially constant over all regions of the globe…at its surface. The moon’s gravitational field is also essentially constant at its surface, but its numerical value is just under one-third that of the earth. A specific body of mass will fall faster here, on earth, than it would on the moon.

Note that “mass” denotes the amount of material present in a body, while “weight” denotes the force of gravitational attraction acting on that mass. When you weigh yourself, you are measuring the force of the earth’s gravitational attraction on your mass!  Double the mass of a body, and you double its weight in a given gravitational field!

Everyday observation tells us that a penny always falls faster than a feather. How, then, do we reconcile our observations with the law of fall and the statement in the opening paragraph of this post? The key to the seeming impasse regarding the falling feather and the penny resides in the word, inherently, as used in the statement of the law of fall which assumes only gravity acting on the object. When objects fall, here on earth, there is an additional force acting on them besides the force of gravity as they fall, and that is the retarding force of air resistance!

If our feather and penny experiment is conducted in a tall glass cylinder with all of its air removed, the feather and the penny will fall precisely side-by-side. I witnessed this at the Boston tech museum many years ago.

The weight of the feather is much less than that of the penny, and the increasing force of air resistance generated during the fall becomes a much larger percentage of a feather’s weight (gravitational attraction) than in the case of a penny. This fact negates the equal acceleration during fall imposed by the law of fall. Physics has a name for the condition which is the basis for the law of fall: It is called the equivalence of  the “gravitational mass” and the “inertial mass” of a body (do not worry if this last comment is confusing to you; a further look into motion physics would quickly make its meaning clear).

Galileo was the first “modern” physicist. His ability to recognize and isolate the “secondary effect” of air resistance in the matter of falling bodies enabled him to bypass the confusion that our everyday experiences often injected into the early study of pure physics. Isaac Newton carried Galileo’s insights much further in his own, subsequent work on motion physics. Newton’s three laws of motion, which every beginning physics student studies, along with his theory of universal gravitation explain precisely the behavior of falling bodies that we have just examined.

One parting comment: Albert Einstein made careful note of the law of fall and the fact that the gravitational mass of an object is precisely equivalent to its inertial mass. Again, it is that latter relationship which dictates that all masses inherently fall with a fixed and equal value of accelerated motion in a given gravitational field. Unlike many fine scientists of the time, Einstein reasoned that the equivalence of gravitational and inertial mass was no coincidence of nature – that something very profound for physics was implied. His persistent curiosity in the matter led him to his theories of relativity which, in 1905 and again in1916, revolutionized all of physics as well as our concept of physical reality.

As for Galileo, his formal statement of the law of fall did not occur until the year 1638, four years before his death. Even though he had reached his major conclusions by 1604, it took him that long to firmly claim priority of his findings by publishing his classic book of science, Discourses on Two New Sciences.

SI ExifGalileo_Sustermans_1

 

 

 

 

 

 

 

The Master and his most important scientific book

For much more information on this and other aspects of motion physics, see my book, The Elusive Notion of Motion: The Genius of Kepler, Galileo, Newton, and Einstein. See also, several other posts on Galileo, Newton, and Einstein by clicking on the “Home” page in the blog header and searching the archives using a keyword such as “science” or by going to the “science” categories in the archives.

 My book and how to order it can be found by clicking on the link below:

 My Motion Physics Book

Einstein’s Three Great Regrets

Because of the diverse following my blog posts enjoy, there are times when I wonder if the topic I choose for the next post will resonate with most of my audience. Will my readers in widely diverse cultures be familiar with or interested in the proposed post?

My Einstein

With Albert Einstein as the topic, those concerns are alleviated. Einstein is arguably the most recognizable personality (and face) in modern times. This, of course, the result of his unparalleled influence on science – an endeavor which inherently knows no cultural or linguistic boundaries thanks to the universal language in which it is expressed – mathematics. Einstein is also one of the most fascinating people, ever, from a personal standpoint – Time magazine’s “Person of the Century.”

After Energy Was Equated to Mass, the World Was Never the Same

Despite his universal acclaim, Einstein’s lifetime of work left him with some bitter tastes in his mouth, some severe indigestion, and three regrets! The first of these concerns the most famous equation in science: e=mc2. Einstein’s enunciation of that famous relationship – that energy and mass are equivalent and interchangeable – came in 1905 on the heels of his special theory of relativity. The world has never been the same since Einstein’s formulations of relativity – certainly not the scientific world, nor the everyday world of most of this planet’s inhabitants. That famous equation, at once so compact yet profound, is the theoretical basis for both the liberation of nuclear energy and the reality of weapons of mass destruction.

 A Pacifist Who Discovers Bigger Bombs?

Fact is ALWAYS stranger than fiction, is it not? Einstein was one of the world’s great pacifists, a spokesman for humanity and world peace. Pacifist attitudes were not viewpoints adopted by him as he grew older and wiser as with some; rather, they were an essential part of his personality and his belief system. Einstein’s role in the story of nuclear weapons is limited strictly to his scientific discovery regarding the equivalence of mass and energy – with one specific exception, a circumstance which he later regretted. In 1939, many colleagues in the international physics community became concerned about Germany’s interest in uranium deposits in the Belgian Congo. At the time of Einstein’s famous revelation in 1905 that e=mc2, it was not at all clear that vast amounts of energy could be liberated from tiny amounts of mass as the equation declares – at least not on any practical scale. By 1939, the feasibility of powerful weapons based on Einstein’s equation was virtually assured.

mushroom-cloud1[1]

Einstein’s colleague, the Hungarian Leo Szilard, planned to present president Franklin Roosevelt with a letter warning him of potential German intentions re: uranium and the development of atomic weapons. Einstein agreed to affix his signature to the letter.

The rest is history, of course, and Einstein had no involvement whatsoever in the resulting crash program to develop the weapon. Einstein was living in the States having fled his native Germany in 1931 because of Hitler’s rise. After the war, when it was shown that Germany had made no real progress toward an atomic bomb, Einstein famously said, “Had I known that the Germans would not succeed in producing an atomic bomb, I never would have lifted a finger.” He further explained that, unfortunately in 1939, there was no way of knowing that.

I believe that Einstein was rightfully at peace with his scientific work, the work that foretold the theoretical possibility of nuclear energy and weapons of mass destruction. His ultimate regret in the whole matter was that mankind had converted the joy and beauty of pure scientific discovery into the sinister menace of nuclear weapons. Always mindful and distrusting of human nature and its frailties, he said, “The unleashing of [the] power of the atom has changed everything but our modes of thinking and thus we drift toward unparalleled catastrophes.”

Einstein’s 1921 Nobel Prize in Physics for Discovery of
the Photoelectric Effect: Enter Quantum Mechanics

Einstein can properly be called the father of quantum mechanics, that modern branch of physics which nobody presumably, even to this day, “understands” at a sophisticated level, but which, nevertheless, “explains” many physical phenomena which classical mechanics, the physics of Isaac Newton, could not. Einstein’s famous 1905 scientific paper on the photoelectric effect which won him his Nobel Prize also earned for him the title of “father of quantum mechanics.” In fact, it was a title he actually shared with his German colleague, the physicist Max Planck who first opened the “quantum door” with his 1900 milestone analysis of radiation emitted from heated bodies of mass.

Einstein struggled throughout the better part of his life trying to come to terms with the “enfant terrible” that he co-fathered with Planck. Why was that? Much as Einstein’s relativity theories overturned many of our time-honored notions about space and time, quantum physics quickly shook our existing notions of light, radiation, and atomic structure. Most difficult for Einstein with his deterministic view of physics was a central tenant of quantum mechanics which declares a limit to what we can know and predict in the sub-microscopic regions where atoms reside. Einstein could not abide dictates of the new science which declared that certain things happen purely by statistical chance in that small world. Suddenly, events were governed by statistical probabilities and were not the result of predictable cause-and-effect as in the old deterministic physics of Newton.

Einstein’s frequent technical discussions with his good friend and chief architect of quantum physics, the great physicist Neils Bohr, often ended with Einstein reaffirming his claim that, “God does not play dice with the universe,” to which Bohr would counter, “How do you know what God would do?” Second only to his passionate curiosity, thinking like God about science and how it should work was a key element of Einstein’s scientific success – a key component of his scientific “art,” if you will; Bohr knew how to hit Einstein’s soft spot in these contentious but always friendly and respectful discussions.

Einstein and Bohr_2

Einstein and Bohr: Discussing quantum mechanics?

Einstein’s resistance to quantum mechanics lasted throughout his life; the success of the science was soon undeniable, however. Einstein accepted that fact, but claimed that the theoretical basis for quantum mechanics was incomplete – the reason why the nature of its assertions was so strange and puzzling.

By the end of his life, Einstein was forced to make peace with the fact that quantum mechanics would not be complete and decipherable (to his satisfaction) by the time he left this earth. Not seeing a resolution to the quantum dilemma in his lifetime was Einstein’s second great regret.

Einstein’s famous “Cosmological Constant;”
 Great Regret #3

In 1917, Einstein amended his 1915 general theory of relativity by adding no less than a “fudge factor” to his theory to account for the fact that the universe appeared to be relatively “static” in nature – neither contracting or expanding. Both Newton’s gravitational theory of 1687 and Einstein’s radical re-definition of its nature in 1915 predicted that the action of mutual gravitational attraction between ANY two bodies of mass should result in a universe which is contracting – drawing closer together. To account for our seemingly static universe, Einstein reluctantly amended his 1915 general theory of relativity by proposing what he called, a “cosmological constant” to account for the discrepancy.

Surprise! The Universe Is Redefined…and Rapidly Expanding!

In 1924, one of science’s greatest astronomers, Edwin Hubble, delivered a bombshell to science in general and astronomy in particular. Using the new 100 inch Hooker reflecting telescope on Mount Wilson, in California, Hubble announced that the universe is not defined by the galaxy in which we reside. The reality is that there are untold millions of sister galaxies distributed throughout a universe orders of magnitude larger than previously believed.

 Hubble Galaxies_1Hubble telescope: Deep-field view of countless galaxies

Many of those faint and fuzzy “stars and nubulae” man has observed over thousands of years are actually complete galaxies unto their own, each containing billions of stars…and likely, planets similar to our own. Furthermore, Hubble later determined that these myriad galaxies are rapidly receding from one another; in other words, the universe is rapidly expanding. The closest major galaxy to our own is the Andromeda galaxy, a mere 2.4 million light-years away. Since light travels at the constant speed of 186,000 miles per second, when we view the Andromeda galaxy today, we are actually seeing light that left it 2.4 million years ago!

Einstein was left holding the bag containing his cosmological constant which was a reticent, ad-hoc determination on his part in the first place and based on a totally different universe. He called the circumstances surrounding his constant, my “greatest blunder.” Today, the mystery of an expanding universe has prompted investigations into strange, not easily detectable entities in space like “dark matter” and “dark energy.” It is thought that these may provide at least part of the answer to the strange behavior of our expanding universe.

Science constantly changes, refining previously held “truths” with improved versions of same and sometimes inserting revolutionary new breakthroughs – like Hubble’s. I think Einstein was overly hard on himself with respect to the cosmological constant, given that reality. RIP Albert Einstein: You did good…real good!