The Iconic P-51 Mustang: The Fighter That Destroyed Hitler’s Luftwaffe and Won the War

Last month, I had yet another opportunity to ride in and fly one of the most iconic military aircraft of all time, the North American P-51 Mustang. Sadly, it did not happen. Maybe next year!

P51-7[1]

The chance to ride in a P-51 materializes yearly when the Collings Foundation and its “Wings of Freedom” nationwide tour of restored World War II aircraft lands at nearby Moffett Field. For nearly a week, the public has the opportunity of getting up-close-and-personal with several “survivors” from the mass post-war scrapping of airplanes which defeated Hitler and Japan not so long ago.

The Betty Jane P-51 is a flying survivor from 1945, one of the very few Mustangs outfitted with two seats and dual flight controls (that’s her pictured above in a Collings Foundation photo and below, in one of mine). For $2200 along with a “once-in-a-lifetime opportunity” attitude, a visitor can reserve a half-hour ride over the San Francisco bay area in that venerable war-bird along with the opportunity of briefly guiding her through a gentle turn or two.

thumb_IMG_6235_1024

Linda and I took our two young grandsons to Moffett for an afternoon of gawking at and clambering through the foundation’s B-17 Flying Fortress and B-24 Liberator bombers. These two aircraft were the major weapons used to dismantle Hitler’s war machine by destroying German factories, airfields, and infrastructure. Implementing a revamped allied strategy in late 1943, these four-engine airplanes commenced attacking the civilian populations of Berlin, Hamburg, and Dresden in a successful effort to erode the German people’s support of Hitler’s war effort. The Collings Foundation’s B-24, Witchcraft, is the lone remaining flying example of its genre (close to nineteen-thousand of them were built during the war)!

DSCN0601

The B-17 Flying Fortress was the more storied of the two workhorse bombers early in the war, and the Foundation’s Nine O’Nine is a beautiful example. It was anticipated that the multiple 50 caliber machine guns protruding from the aptly named “Fortress” would provide an adequate defense against German fighter-interceptors. That soon proved to be misplaced idealism as the Luftwaffe and flak from the ground took its toll on the “heavies.”

DSCN0638

b17hit[1]

But the airplane on the tour that, as in years past, captured my imagination even more than the others, was the Betty Jane. The P-51 Mustang rapidly became the best friend of the B-17 and B-24 bomber crews who flew mission after mission in large formations from their airfields dotting Great Britain’s countryside. Their destination: Targets deep into German airspace. Earlier in the war, the slow-flying four-engine bombers and their deadly cargo were initially escorted during the long flight into Germany by allied fighter planes like the Republic P-47 Thunderbolt, a plane of limited flying range and mediocre maneuverability. Typically, well before the heavy bombers reached their targets over Germany, the fighter escorts were forced to break-off and return to base due to their limited range (fuel). At that point, the bomber formations became sitting ducks for the agile and deadly German fighter planes which came up to meet them.

The P-51 Mustang: Just-In-Time Delivery to Allied Fighter Groups

The deeper the penetration into German airspace, the greater the allied bomber losses. The turning point came during the infamous raid over Regensburg, Germany, where 60 bombers were lost, each with a ten-man crew – 600 men. Just at this critical point, the newly-developed P-51 Mustang reached operational status and became available to the fighter groups based in England. Designed from the get-go to be a superior fighter, the P-51 was just that. With its fine maneuverability and the powerful, in-line, twelve cylinder, liquid-cooled engine conceived by Rolls-Royce but built under license by the Packard motor car company in the United States, the Mustang was superior to its German counterparts, the Messerschmidt Me 109 and the Focke-Wulf 190.

357th Gun Film

 A German Me 109 caught in the gun cameras of a P-51

 Critically important was the Mustang’s superior range, aided by external, under-the-wing, drop-tanks carrying fuel. Now, the bombers had an escort fighter which could not only accompany them deep into German territory in a defensive, protective posture, but could inflict losses on the Luftwaffe as its pilots attacked the bomber formations. In this dual sense, it can justifiably be said that the P-51 both destroyed the Luftwaffe and won the war by allowing the “heavies” to reach and destroy their targets.

At about that time, allied commanders expanded bombing targets to include the populations of Berlin, Hamburg, and Dresden. Late in the war, General Jimmy Doolittle also famously altered the successful defensive role of the P-51 from solely  a long-range bomber escort by ordering the fighter groups to adopt a more offensive posture, attacking Luftwaffe fighters wherever they could be found. The mandate was to leave the bomber formations, when feasible, and destroy the German interceptors before they could locate and reach and the bombers. Doolittle wanted to strafe and destroy German planes on the ground – at their airfields – when possible. The goal: To gain complete air superiority prior to the planned ground invasions central to D-Day. The Luftwaffe was nowhere to be seen by D-Day, thanks in large part to the effective dual role of the P-51 both as bomber escort and Luftwaffe killer.

Firing-Up the Big Packard Engine of Betty Jane

As my grandsons and I stood outside the roped area, a mere 50 feet from Betty Jane, the pilot fired up the big Packard-built twelve-cylinder engine sporting a large, four-bladed propeller. The pilot yelled “clear” from the cockpit, the big prop started to turn, and the engine came to life after belching smoke and the usual series of backfires. The engine sounded a throaty roar as Betty Jane moved out toward the taxi-way. My grandsons held their ears…I did not and drank it all in. In my mind’s eye, I could imagine the emotions of a pilot on the flight line at Leiston, England, bringing that big engine to life en-route to yet another bomber escort mission over Germany in 1944/45. Despite the huge war effort and all the backing provided by the allies for combat flight operations, out there on the flight line, as the engine coughed, sputtered, roared to life, and the canopy closed, it was one man in one machine – very far from home. The pilot was about to face the uncertainties of weather, navigation, and his enemy counterparts who would be out there, somewhere, waiting for him and the opportunity to shoot him and his machine out of the sky.

For me, it is difficult to conjure up a more daring and exhilarating human experience than that encountered by those flyers in World War II. For them at the time, there surely seemed nothing “romantic” about the deadly task they faced – only a sense of high adventure and “what the hell, I hope I come back from this one!” I have read the late-life accounts of some who flew Mustangs against the German Luftwaffe and lived to tell about it. Despite some surely ugly recollections of killing and death which stubbornly remain, time dulls many of the sharp edges – as it always does – for these men. These flyers are revered by the public for their courage, daring, and skill during wartime, and that is appropriate. Despite old age and the challenges of settling down after flying, these warriors possess indelible and precious memories of that time in their young lives when they and their machines defied the great odds stacked against them. Those who flew the P-51 Mustang, to a man, relate their admiration of and gratitude to the airplane that saw them through.

Lt_James_L_Brooks_with_P51_1944[1]

Lt. Jim Brooks and his P-51, February – 1945

Perhaps next year, when the Collings Foundation tour returns, I will have an extra $2200 to go up in Betty Jane as well as the requisite moxie to do so. I cannot think of a greater, more meaningful thrill.

Charles Darwin’s Journey on the Beagle: History’s Most Significant Adventure

In 1831, a young, unknown, amateur English naturalist boarded the tiny ship, HMS Beagle, and embarked, as crew member, on a perilous, five-year journey around the world. His observations and the detailed journal he kept of his various experiences in strange, far-off lands would soon revolutionize man’s concept of himself and his place on planet earth. Darwin’s revelations came in the form of his theory of natural selection – popularly referred to as “evolution.”

H.M.S. Beagle_Galapagos_John Chancellor

Since the publication of his book, On the Origin of Species in 1859, which revealed to the scientific community his startling conclusions about all living things based on his voyage journal, Darwin has rightfully been ranked in the top tier of great scientists. In my estimation, he is the most important and influential natural scientist of all time, and I would rank him right behind Isaac Newton and Albert Einstein as the most significant and influential scientific figures of modern times.

Young Charles Darwin enrolled at the University of Edinburgh in 1825 to pursue a career in medicine. His father, a wealthy, prominent physician had attended Edinburgh and, indeed, exerted considerable influence on young Charles to follow him in a medical career. At Edinburgh, the sixteen-year old Darwin quickly found the study of anatomy with its dissecting theatre an odious experience. More than once, he had to flee the theatre to vomit outside after witnessing the dissection process. The senior Darwin, although disappointed in his son’s unsuitability for medicine, soon arranged for Charles to enroll at Cambridge University to study for the clergy. In Darwin’s own words: “He [the father] was very properly vehement against my turning an idle sporting man, which seemed my probable destination.”

Darwin graduated tenth in his class of 168 with a B.A. and very little interest in the clergy! During his tenure at Cambridge, most of young Darwin’s spare time was spent indulging his true and developing passion: Collecting insects with a special emphasis on beetles. Along the way, he became good friends with John Steven Henslow, professor of geology, ardent naturalist, and kindred spirit to the young Charles.

Wanted: A Naturalist to Sail On-Board the Beagle

On 24 August, 1831, in one of history’s most prescient communiques, Professor Henslow wrote his young friend and protegee: “I have been asked by [George] Peacock…to recommend him a naturalist as companion to Capt. Fitzroy employed by Government to survey the S. extremity of America [the coasts of South America]. I have stated that I considered you to be the best qualified person I know of who is likely to undertake such a situation. I state this not on the supposition of ye being a finished naturalist, but as amply qualified for collecting, observing, & noting any thing worthy to be noted in natural history.” Seldom in history has one man “read” another so well in terms of future potential as did Henslow in that letter to young Darwin!

Charles’ father expressed his opposition to the voyage, in part, on the following grounds as summarized by young Darwin:

-That such an adventure could prove “disreputable to my [young Darwin’s] character as a Clergyman hereafter.”

-That it seems “a wild scheme.”

-That the position of naturalist “not being [previously] accepted there must be some serious objection to the vessel or expedition.”

-That [Darwin] “should never settle down to a steady life hereafter.”

-That “it would be a useless undertaking.”

Darwin 1840_RichmondThe young man appealed to his uncle Josiah Wedgewood [of pottery family fame] whose judgement he valued. Scientific history hung in the balance as Uncle Josiah promptly weighed-in with the senior Darwin, offering convincing arguments in favor of the voyage. In rebuttal to the objection from Darwin’s father that “it would be a useless undertaking,” the Uncle reasoned: “The undertaking would be useless as regards his profession [future clergyman], but looking upon him as a man of enlarged curiosity, it affords him the opportunity of seeing men and things as happens to few.” Enlarged curiosity, indeed! How true that proved to be. The senior Darwin then made his decision in the face of Uncle Josiah’s clear vision and counsel: Despite lingering reservations, he gave his permission for Charles to embark on the historic sea voyage, one which more than any other, changed mankind’s sense of self. Had the decision been otherwise, Darwin’s abiding respect for his father’s opinion and authority would have bequeathed the world yet another clergyman while greatly impeding the chronicle of man and all living things on this planet.

On 27 December, 1831, HMS Beagle with Darwin aboard put out to sea, beginning an adventure that would circle the globe and take almost five years. Right from the start, young Charles became violently seasick, often confined to his swaying hammock hanging in the cramped quarters of the ship. Seasickness dogged young Darwin throughout the voyage. I marvel at the fortitude displayed by this young, recently graduated “gentleman from Cambridge” as he undertook such a daunting voyage. Given that the voyage would entail many months at sea, under sail, Capt. Fitzroy and Darwin had agreed from the start that Charles would spend most of his time on land, in ports of call, while the Beagle would busy itself surveying the local coastline per its original government charter. While on land, Darwin’s mission was to observe and record what he saw and experienced concentrating, of course, on the flora, fauna, and geology of the various diverse regions he would visit.

St. Jago, an island off the east coast of South America was the Beagle’s first stop on 16 January, 1832. It was here he made one of his first significant observations. Quoting from his journal: “The geology of this island is the most interesting part of its natural history. On entering the harbour, a perfectly horizontal white band in the face of the sea cliff, may be seen running for some miles along the coast, and at the height of about forty-five feet above the water. Upon examination, this white stratum is found to consist of calcareous [calcium] matter, with numerous shells embedded, most or all of which now exist on the neighboring coast.”

Darwin goes on to conclude that a stratum of sea-shells very much higher than the current water line speaks to ancient, massive upheavals of the earth in the region. From the simple, focused collector of beetles in his Cambridge days, Darwin had now become obsessed with the bigger picture of nature, a view which embraced the importance of geology/environment as key to decoding nature’s secrets.

In a fascinating section of his journal, Darwin describes his astonishment at the primitive state of the native inhabitants of Tierra Del Fuego, at the southern tip of South America. From the journal entry of 17 December, 1832: “In the morning, the Captain sent a party to communicate with the Fuegians. When we came within hail, one of the four natives who were present advanced to receive us, and began to shout most vehemently, wishing to direct us where to land. When we were on shore the party looked rather alarmed, but continued talking and making gestures with great rapidity. It was without exception the most curious and interesting spectacle I ever beheld: I could not have believed how wide was the difference between savage and civilized man; it is greater than between a wild and domesticated animal, inasmuch as in man there is a greater power of improvement.” A separate reference I recall reading referring to Darwin’s encounter with the Fuegians stated that he could scarcely believe that the naked, dirty, and primitive savages before his eyes were of the same species as the sherry-sipping professors back at Cambridge University – so vividly stated.

On 2 October, 1836, the Beagle arrived at Falmouth, Cornwall, her nearly five-year journey circumnavigating the globe complete. Throughout the trip, Darwin recorded life on the high seas and, most importantly, his myriad observations on the geology of the many regions visited on foot and horseback as well as the plant and animal life.

I often invoke the mantra to which I ardently subscribe: That fact is always stranger than fiction…and so much more interesting and important. Picturing Darwin, the elite Englishman and budding naturalist, riding horseback amidst the rough-hewn vaqueros [cowboys] of Chile speaks to the improbability of the entire venture. When studying Darwin, it quickly becomes clear to the reader that his equable nature and noble intents were obvious to those whose approval and cooperation were vital for the success of his venture. That was particularly true of the seaman crew of the Beagle and of Capt. Fitzroy whose private cabin on the ship, Darwin shared. Fortunately, Fitzroy was a man of considerable ability and efficiency in captaining the Beagle. He was, at heart, a man sensible of the power and importance of scientific knowledge, and that made his less admirable qualities bearable to Darwin. The crew made good-natured fun of the intellectual, newbie naturalist in their midst, but spared no effort in helping Darwin pack his considerable array of collected natural specimens, large and small, in boxes and barrels for shipment back to Professor Henslow at Cambridge. Many of these never arrived, but most did make their way “home.”

When Darwin returned to Cambridge after arriving back home at Cornwall, he was surprised to learn that Professor Henslow had spread news among his friends at Cambridge of the Beagle’s whereabouts in addition to sharing, with his university colleagues, the specimens sent home by his young protegee. Darwin had embarked on the Beagle’s voyage as an amateur collector of insects. Now, to his great surprise, he had become a naturalist with a reputation and a following within the elite circles at Cambridge, thanks to Professor Henslow.

Charles_Darwin_seated_crop[1]Once home, Charles Darwin wasted little time tackling the immense task of studying and categorizing the many specimens he had sent back during the voyage. By 1838, the vestiges of natural selection had begun to materialize in his mind. One situation of particular note that he recorded in the Galapagos Islands fueled his speculations. There, he noted that a species of bird indigenous to several of the islands in the archipelago seemed to have unique beaks depending upon which island they inhabited. In virtually all other aspects, the birds closely resembled one another – all members of a single species. Darwin noticed that the beaks in each case seemed most ideally suited to the particular size and shape of the seeds most plentiful on that particular island. Darwin took great pains to document these finches of the Galapagos, suspecting that they harbored important clues to nature’s ways. Darwin reasoned that somehow the birds seemed to be well-adapted to their environment/food source in the various islands. Clues such as this shaped his thought processes as he carefully distilled the notes entered in his journal during the voyage. By 1844, Charles Darwin had formulated the framework for his explanation of animal/plant adaptation to the environment. Except for one or two close and trusted colleagues, Darwin kept his budding theory to himself for years to come for important reasons which I discuss shortly.

 

Darwin published his book, Journal of Researches, in 1839. The book was taken from his copious journal entries during the voyage; within its pages resides the seed-stock from which would germinate Darwin’s ultimate ideas and his theory of natural selection. This book remained, to Darwin’s dying day, closer to his affections and satisfaction than any other including On the Origin of Species.

 

 

What Is the Essence of Natural Selection?

Darwin’s theory of natural selection proposed that species are not immutable across time and large numbers of individuals. There appear random variations in this or that characteristic in a particular individual within a large population. Such variations, beginning with that individual, could be passed along to future generations through its immediate offspring. In the case of a singular Galapagos finch born with a significantly longer and narrower beak than that of a typical bird in the species, that specimen and its offspring which might inherit the tendency will be inevitably subjected to “trial by nature.” If the longer, narrower beak makes it easier for these new birds to obtain and eat the seeds and insects present in their environment, these birds will thrive and go on, over time, to greatly out-reproduce others of their species who do not share the “genetic advantage.” Eventually that new characteristic, in this example, the longer, narrower beak, will predominate within the population in that environment. This notion is the essence of Darwin’s theory of natural selection. If the random variation at hand proves to be disadvantageous, future generations possessing it will be less likely to survive than those individuals without it.

Note that this description, natural selection, is far more scientifically specific than the oft-used/misused phrase applied to Darwin’s work: theory of evolution. To illustrate: “theory of evolution” is a very general phrase admitting even the possibility that giraffes have long necks because they have continually stretched them over many generations reaching for food on the higher tree canopies. That is precisely the thinking of one of the early supporters of evolution theory, the Frenchman, Lamarck, as expressed in his 1809 publication on the subject. Darwin’s “natural selection” explains the specific mechanism by which evolution occurs – except for one vital, missing piece… which we now understand.

Genetics, Heredity, and the DNA Double Helix:
 Random Mutations – the Key to Natural Selection!

Darwin did not know – could not know – the source of the random significant variations in species which were vital to his theory of natural selection. He came to believe that there was some internal genetic blueprint in living things that governed the species at hand while transmitting obvious “familial traits” to offspring. Darwin used the name “gemmules” referring to these presumed discrete building blocks, but he could go no further in explaining their true nature or behavior given the limited scientific knowledge of the time.

James Watson and Francis Crick won the 1962 Nobel Prize in medicine and physiology for their discovery in 1953 of the DNA double helix which carries the genetic information of all living things. The specific arrangement of chemical base-pair connections, or rungs, along the double helix ladder is precisely the genetic blueprint which Darwin suspected. The human genome has been decoded within the last twenty years yielding tremendous knowledge about nature’s life-processes. We know, for instance, that one particular – just one – hereditary base-pair error along the double helix can result in a devastating medical condition called Tay-Sachs, wherein initially healthy brains of newborns are destroyed in just a few years due to the body’s inability to produce a necessary protein. Literally every characteristic of all living things is dictated by the genetic sequence of four different chemical building blocks called bases which straddle the DNA double helix. The random variations necessary for the viability of Darwin’s theory of natural selection are precisely those which stem from random base-pair mutations, or variations, along the helix. These can occur spontaneously during genetic DNA replication, or they can result from something as esoteric as the alpha particles of cosmic radiation hitting a cell nucleus and altering its DNA. The end result of the sub-microscopic change might be trivial, beneficial, or catastrophic in some way to the individual.

Gregor Mendel: The Father of Genetics…Unknown to Darwin

In 1865, a sequestered Austrian monk published an obscure scientific paper in, of all things, a regional bee-keepers journal. Like Darwin, originally, Mendel had no formal scientific qualifications, only a strong curiosity and interest in the pea plants he tended in the monastery garden. He had wondered about the predominant colors of the peas from those plants, green and yellow, and pondered the possible mechanisms which could determine the color produced by a particular plant. To determine this, he concocted a series of in-breeding experiments to find out more. After exhaustive trials using pea color, size of plant, and five other distinguishing characteristics of pea plants, Mendel found that the statistics of inheritance involved distinct numerical ratios, as for example, a “one-in-four chance” for a specific in-breeding outcome. The round numbers present in Mendel’s experimental results suggested the existence of distinct, discrete genetic mechanisms at work – what Darwin vaguely had termed “gemmules.” Mendel’s 1865 paper describing his findings, and the work behind it cements Mendel’s modern reputation as the “Father of Genetics.” Incredibly and unfortunately virtually no one took serious notice of his paper until it was re-discovered in 1900, thirty-five years after its publication, by the English geneticist William Bateson!

Original offprints (limited initial printings for the author) of Mendel’s paper are among the rarest and most desirable of historical works in the history of science, selling for hundreds of thousands of dollars on the rare book/manuscript market. We know that only forty were printed and scarcely half of these have been accounted for. Question: Did Mendel send an offprint of his pea plant experiments to Charles Darwin in 1865, well after the publication of Darwin’s groundbreaking On the Origin of Species in 1859? An uncut [meaning unopened, thus unread] offprint was presumably found among Darwin’s papers after his death, according to one Mendel reference source. Certainly, no mention of it was ever made by Charles Darwin.

 It is an intriguing thought that the key, missing component of Darwin’s natural selection theory as espoused in his Origin of Species possibly resided unread and unnoticed on Darwin’s bookshelf! And is it not a shame that Mendel lived out his life in the abbey essentially unknown and without due credit for his monumental work in the new science of genetics, a specialty which he founded?

Darwin’s Reluctance to Publish His Theory Nearly Cost Him His Due Credit

Darwin finally revealed his theory of natural selection to the public and the scientific community at large in 1859 with the book publication of On the Origin of Species. In fact, the central tenets of the book had congealed in Darwin’s mind long before, by 1844. He had held the framework of his theory close to the vest for all that time! Why? Because to espouse evolutionary ideas in the middle of the nineteenth century was to invite scorn and condemnation from creationists within many religions. No one was more averse to a more secular universe which promoted the notion of a less personal creator, one which did not create man and animals in more or less final form (despite obvious diversity) than Emma Wedgewood Darwin, Darwin’s very religious wife. She believed in an afterlife in which she and her beloved husband would be joined together for eternity. Charles was becoming less and less certain of this religious ideal as the years went by and nature continued to reveal herself to the ever-inquiring self-made naturalist who had set out to probe her ways.

To espouse a natural world which, once its fundamental constituents were brought together, would henceforth change and regulate itself without further involvement by the Creator would be a painful repudiation of Emma’s fundamental beliefs in a personal God. For this very personal reason and because of the professional risk of being ostracized by the community of naturalists for promulgating radical, anti-religious ideas, Darwin put off publication of his grand book, the book which would insure him priority and credit for one of the greatest of all scientific conclusions.

After stalling publication for years and with his manuscript only half completed, Darwin was shocked into feverish activity on his proposed book by a paper he received on 18 June, 1858. It was from a fellow naturalist of Darwin’s acquaintance, one Alfred Russel Wallace. In his paper, Wallace outlined his version of natural selection which eerily resembled the very theory Darwin was planning to eventually publish to secure his priority. There was no doubt that Wallace had arrived independently at the same conclusions that Darwin had reached many years earlier. Wallace’s paper presented an extremely difficult problem for Darwin in that Wallace had requested that Darwin pass his [Wallace’s] paper on to their mutual friend, the pathfinding geologist, Charles Lyell.

Darwin in a Corner: Academic Priority at Stake
Over One of the Great Scientific Breakthroughs

Now Darwin felt completely cornered. If he passed Wallace’s paper on to Lyell as requested, essentially making it public, the academic community would naturally steer credit for the theory of natural selection to Wallace. On the other hand, having just received Wallace’s paper on the subject, how would it look if he, Darwin, suddenly announced publicly that he had already deciphered nature and her ways – well before Wallace had? That course of action could inspire suspicions of plagiary on Darwin’s part.

The priority stakes were as high as any since the time of Isaac Newton when he and the mathematician Gottfried Liebniz locked horns in a bitter battle over credit for development of the calculus. It had been years since Darwin’s voyage on the Beagle which began the long gestation of his ideas on natural selection. He had been sitting on his conclusions since 1844 for fear of publishing, and now he was truly cornered, “forestalled,” as he called it. Darwin, drawing on the better angels of his morose feelings, quickly proposed to Wallace that he [Darwin] would see to it that his [Wallace’s] paper be published in any journal of Wallace’s choosing. In what became a frenzied period in his life, he reached out to two of his closest colleagues and trusted confidants, Charles Lyell and Joseph Hooker for advice. The two been entrusted with the knowledge of Darwin’s work on natural selection for a long time; they well understood Darwin’s priority in the matter, and he needed them now. The two friends came up with a proposal: Publish both Wallace’s paper and a synopsis by Darwin outlining his own long-standing efforts and results. The Linnean Society presented their joint papers in their scientific journal on 1 July, 1858. Fortunately for Darwin, Alfred Russel Wallace was of a conciliatory nature regarding the potential impasse over priority by way of his tacit acknowledgement that his colleague had, indeed, been first to formulate his opinions on natural selection.

Nonetheless, for Darwin, the cat was out of the bag, and the task ahead was to work full-steam to complete the large book that would contain all the details of natural selection and insure his priority. He worked feverishly on his book, On the Origins of Species, right up to its publication by John Murray. The book went on sale on 22 November, 1859, and all 1250 copies sold quickly. This was an excruciating period of Darwin’s life. He was not only under unrelenting pressure to complete one of the greatest scientific books of all time, he was intermittently very ill throughout the process presumably from a systemic problem contracted during his early travels associated with the Beagle voyage. Yes, the expected controversy was to come immediately after publication of the book, but Darwin and his contentions have long weathered the storm. Few of his conclusions have not stood the test of time and modern scrutiny.

The Origin was his great book, but the book that was the origin of the Origin, his 1839 Journal of Researches always remained his favorite. Certainly, the Journal was written at a much happier time in Darwin’s life, a time flush with excitement over his prospects as a newly full-fledged naturalist. For me, the Journal brims with the excitement of travel and scientific discovery/fact-finding – the seed-corn of scientific knowledge (and new technologies). The Origin represents the resultant harvest from that germinated seed-corn.

“Endless Forms Most Beautiful” –
Natural Selection in Darwin’s Own Words

In his Introduction to the Origin, Darwin describes the essence of natural selection:

“In the next chapter, the struggle for existence amongst all organic beings throughout the world, which inevitably follows from their high geometrical powers of increase, will be treated of. This is the doctrine of Malthus, applied to the whole animal and vegetable kingdoms. As many more individuals of each species are born that can possibly survive; and as, consequently, there is a frequently occurring struggle for existence, it follows that any being, if it vary however slightly in any manner profitable to itself, under the complex and sometimes varying conditions of life, will have a better chance of surviving, and thus be naturally selected. From the strong principle of inheritance, any selected variety will tend to propagate its new and modified form.

Darwin and Religion

Charles Darwin, educated for the clergy at Cambridge, increasingly drifted away from orthodox religious views as his window on nature and her ways became more transparent to him over the decades. Never an atheist, his attitudes were increasingly agnostic as he increasingly embraced the results of his lifelong study of the natural world. The Creator, which Darwin believed in, was not, to him, the involved, shepherd of all living things in this world. Rather, he seemed more like the watchmaker who, after his watch was first assembled, wound it up and let it run on its own while retreating to the background.

 Another viewpoint, which I tend to favor and which may apply to Darwin: God, whom we cannot fully know in this life, created not only all living things at the beginning, but also the entire structure of natural law (science) which dictates not only the motion of the planets, but the future course of life forms. Natural selection, hence evolution as well, are central tenants of that complete structure of natural law. The laws of nature, which permanently bear the fingerprints of the creator and his creation, thus enable the self-powered, self-regulating behaviors of the physical and natural world – without contradiction.

 Charles Darwin: Humble Man and Scientific Titan

questioning-darwin-1024[1]

In writing this post, my re-acquaintance with Darwin has brought great joy. Some years, now, after initially reading the biographies and perusing his works, I re-discover the life and legacy which is so important to science. His body of work includes several other very important books beside his Journal and Origin. Beyond his scientific importance and the science, itself, lies the man himself – a man of very high character and superb intellect. Darwin was gifted with intense curiosity, that magical motor that drives great accomplishment in science. Passion and curiosity: Isaac Newton had them in great abundance, and so, too, did Albert Einstein. Yet, Charles Darwin was different in several respects from those two great scientists: First, he was fortunate enough to have been born to privilege and was thus comfortably able to devote his working life to science from the beginning. Second, Darwin was a very happily married man who fathered ten children, each of which he loved and doted upon. Third, Darwin’s character was impeccable in all respects. His personality was stiffened a bit by the English societal conventions prevalent then, but his humanity shows through in so many ways. His struggle with religion is one most of us can relate to.

Reading Darwin’s works is a joy both because he was an articulate, educated Englishman and because the contents of his books like the Journal and Origin are easily digestible compared to the major works of Newton and Einstein. Like Darwin himself, my favorite book of his is The Journal of Researches, sometimes referred to as the Voyage of the Beagle. What an adventure.

Darwins_Thinking_Path[1]

The “sandwalk” path around the extended property of his long-held estate, Down House. Darwin frequently traversed this closed path on solitary walks around the estate while he gathered his thoughts about matters both big and small.

Reason and Reflection Is Back!

Alan KubitzTo all the readers of my blog, Reason and Reflection: I am pleased to announce that my blog site is emerging from a quasi-hibernation that has been in effect these past several months. After more than two-and-a-half years of posting weekly pretty much without fail beginning in February of 2013, some 136 posts in all, the need arose to spend considerable time for the past several months on personal/family matters, hence only three posts were offered so far in 2016. At this time, I am ready to resume doing what I enjoy doing, and that means writing about things that interest and excite me or about relevant happenings in this world of ours. My future intent is to post at least every two to three weeks without a fixed time-table.

This new phase will begin with a brand new post tomorrow, June 14. It features Charles Darwin – his personal story and his contributions to natural science. Look for it tomorrow: I think it will be worth your time.  

Those of you who have not become listed “followers” of my blog might wish to become one by clicking the grey “FOLLOW” button at the top right column of my home page. Like many have done, providing your E-mail address will insure that you receive a brief notice each time a new post appears, and you can un-FOLLOW at any time (but I hope not!). There is no other obligation than that involved in following my blog.

I REALLY LIKE TO RECEIVE COMMENTS (GOOD OR BAD) ON MY POSTS

Please let me know what you think. You do not need to be a listed follower in order to comment. Don’t try spamming because WordPress will filter it out automatically. I always respond to legitimate comments, so at the end of each post, either look for a “comment box” or a small “Leave a reply” to click on for commenting.

Just one more thing: On my home page, you have access via my archives to every one of my 136 posts. Go ahead and look, and if you like what you see and read in my posts, let your friends know about this site which resides at :                                                   http://www.reasonandreflection.wordpress.com

Marking the Passage of Time: The Elusive Nature of the Concept

Nature presents us with few mysteries more tantalizing than the concept of “time.” Youngsters, today, might not think the subject worthy of much rumination: After all, one’s personal iPhone can conveniently provide the exact time at any location on our planet.

thumb_IMG_3884_1024

Human beings have long struggled with two fundamental questions regarding time:

  1. What are the fundamental units in nature used to express time? More simply, what constitutes one second of time? How is one second determined?
  2. How can we “accurately” measure time using the units chosen to express it?

The simple answers for those so inclined might be: We measure time in units of seconds, minutes, hours, and days, etc., and we have designed carefully constructed and calibrated clocks to measure time! That was easy, wasn’t it?

The bad news: Dealing with the concept of time is not quite that simple.
The good news: The fascinating surprises and insights gained from taking a closer, yet still cursory, look at “time” are well worth the effort to do so. To do the subject justice requires far more than a simple blog post – scholarly books, in fact – but my intent, here, is to illustrate how fascinating the concept of time truly is.

Webster’s dictionary defines time as “a period or interval…the period between two events or during which ‘something’ exists, happens, or acts.”

For us humans the rising and setting of the sun – the cycle of day and night is a “something” that happens, repeats itself, and profoundly effects our existence. It is that very cycle which formed our first concept of time. The time required for the earth to make one full revolution on its axis is but one of many repeating natural phenomena, and it was, from the beginning of man’s existence, uniquely qualified to serve as the arbitrary definition of time measurement. Other repeatable natural phenomena could have anchored our definition of time: For instance, the almost constant period of the earth’s rotation around the sun (our year) or certain electron- jump vibrations at the atomic level could have been chosen except that such technology was unknown and unthinkable to ancient man. In fact, today’s universally accepted time standard utilizes a second defined by the extraordinarily stable and repeatable electron jumps within Cesium 133 atoms – the so-called atomic clock which has replaced the daily rotation of the earth as the prime determinant of the second.

Why use atomic clocks instead of the earth’s rotation period to define the second? Because the earth’s rotational period varies from month to month due to the shape of our planet’s orbit around the sun. Its period also changes over many centuries as the earth’s axis “precesses” (a slowly rotating change of direction) relative to the starry firmament, all around. By contrast, atomic clocks are extremely regular in their behavior.

Timekeepers on My Desk: From Drizzling Sand to Atomic Clocks!

I have on my desk two time-keepers which illustrate the startling improvement in time-keeping over the centuries. One is the venerable hour-glass: Tip it over and the sand takes roughly thirty minutes (in mine) to drizzle from top chamber to bottom. The other timekeeper is one of the first radio-controlled clocks readily available – the German-built Junghans Mega which I purchased in 1999. It features an analog display (clock-hands, not digital display) based on a very accurate internal quartz electronic heartbeat: The oscillations of its tiny quartz-crystal resonator. Even the quartz oscillator may stray from absolute accuracy by as much as 0.3 seconds per day in contrast to the incredible regularity of the cesium atomic clocks which now define the international second as 9,192,631,770 atomic “vibrations” of cesium 133 atoms – an incredibly stable natural phenomena. The Junghans Mega uses its internal radio capability to automatically tune in every evening at 11 pm to the atomic clocks operating in Fort Collins, Colorado. Precise time-sync signals broadcast from there are utilized to “reset” the Mega to the precise time each evening at eleven.

I love this beautifully rendered German clock which operates all year on one tiny AA battery and requires almost nothing from the operator in return for continuously accurate time and date information. Change the battery once each year and its hands will spin to 12:00 and sit there until the next radio query to Colorado. At that point, the hands will spin to the exact second of time for your world time zone, and off it goes….so beautiful!

Is Having Accurate Time So Important?
You Bet Your Life…and Many Did!

Yes, keeping accurate time is far more important than not arriving late for your doctor’s appointment! The fleets of navies and the world of seagoing commerce require accurate time…on so many different levels. In 1714, the British Admiralty offered the then-huge sum of 20,000 pounds to anyone who could concoct a practical way to measure longitude at sea. That so-called Longitude Act was inspired by a great national tragedy involving the Royal Navy. On October 22, 1707, a fleet of ships was returning home after a sojourn at sea. Despite intense fog, the flagship’s navigators assured Admiral Sir Cloudisley Shovell that the fleet was well clear of the treacherous Scilly Islands, some twenty miles off the southwest coast of England. Such was not the case, however, and the admiral’s flagship, Association, struck the shoals first, quickly sinking followed by three other vessels. Two thousand lives were lost in the churning waters that day. Of those who went down, only two managed to wash ashore alive. One was Sir Cloudesley Shovell. As an interesting aside, the story has it that a woman combing the beach happened across the barely alive admiral, noticed the huge emerald ring on his finger, and promptly lifted it, finishing him off in the process. She confessed the deed some thirty years later, offering the ring as proof.

The inability of seafarers to navigate safely by determining their exact location at sea was of great concern to sea powers like England who had a great investment in both their fleet of fighting ships and their commerce shipping. A ship’s latitude could be quite accurately determined on clear days by “shooting” the height of the sun above the horizon using a sextant, but its longitude position was only an educated guess. The solution to the problem of determining longitude-at-sea materialized in the form of an extremely accurate timepiece carried aboard ship and commonly known ever since as a “chronometer.” Using such a steady, accurate time-keeper, longitude could be calculated.

For the details, I recommend Dava Sobel’s book titled “Longitude.” The later, well-illustrated version is the one to read. In her book, the author relates the wonderfully improbable story of an English country carpenter who parlayed his initial efforts building large wooden clocks into developing the world’s first chronometer timepiece accurate enough to solve the “longitude problem.” After frustrating decades of dedicated effort pursuing both the technical challenge and the still-to-be-claimed prize money, John Harrison was finally able to collect the 20,000 pound admiralty award.

Why Mention Cuckoo Clocks? Enter Galileo and Huygens

Although the traditional cuckoo clock from the Black Forest of Germany does not quite qualify as a maritime chronometer, its pendulum principle plays an historical role in the overall story of time and time-keeping. With a cuckoo clock or any pendulum clock, the ticking rate is dependent only on the effective length of the pendulum, and not its weight or construction. If a cuckoo clock runs too fast, one must lower the typical wood-carved leaf cluster on the pendulum shaft to increase the pendulum period and slow the clock-rate.

No less illustrious a name than Galileo Galilei was the first to propose the possibilities of the pendulum clock in the early 1600’s. Indeed, Galileo was the first to understand pendulum motion and, with an assistant late in life, produced a sketch of a possible pendulum clock. A few decades later, in 1658, the great French scientist, Christian Huygens, wrote his milestone book of science and mathematics, Horologium Oscillatorium, in which he presented a detailed mathematical treatment of pendulum motion-physics. By 1673, Huygens had constructed the first pendulum clock following the principles set forth in his book.

thumb_IMG_3908_1024

In 1669, a very notable scientific paper appeared in the seminal English journal of science, The Philosophical Transactions of the Royal Society. That paper was the first English translation of a treatise originally published by Christian Huygens in 1665. In his paper, Huygens presents “Instructions concerning the use of pendulum-watches for finding the longitude at sea, together with a journal of a method for such watches.” The paper outlines a timekeeping method using the “equation of time” (which quantifies the monthly variations of the earth’s rotational period) and capitalizes on the potential accuracy of his proposed pendulum timekeeper. The year 1669 in which Huygens’ paper on finding the longitude-at-sea appeared in The Philosophical Transactions preceded by thirty-eight years the disastrous navigational tragedy of the British fleet and Sir Cloudesley Shovell in 1707.

As mentioned earlier, John Harrison was the first to design and construct marine chronometers having the accuracy necessary to determine the longitude-at-sea. After many years of utilizing large balanced pendulums in his bulky designs, Harrison’s ultimate success came decades later in the form of a large “watch” design which utilized the oscillating balance-wheel mechanism, so familiar today, rather than the pendulum principle. Harrison’s chronometer taxed his considerable ingenuity and perseverance to the max. The device had to keep accurate time at sea – under the worst conditions imaginable ranging from temperature and humidity extremes to the rolling/heaving motion of a ship at sea

The Longitude Act of 1714 specified that less than two minutes of deviation from true time is required over a six-week sea voyage to permit a longitude determination to within one-half degree of true longitude (35 miles at the equator). Lost time, revenue, and human lives were the price to be paid for excessive timekeeper inaccuracies.

Einstein and Special Relativity: Speeding Clocks that Run Slow

Albert Einstein revolutionized physics in 1905 with his special theory of relativity. Contrary to the assumptions of Isaac Newton, relativity dictates that there is no absolute flow of time in the universe – no master clock, as it were. An experiment will demonstrate what this implies: Two identical cesium 133 atomic clocks (the time-standard which defines the “second”) will run in virtual synchronization when sitting side by side in a lab. We would expect that to be true. If we take one of the two and launch it in an orbital space vehicle which then circles the earth at 18,000 miles per hour, from our vantage point on earth, we would observe that the orbiting clock now runs slightly slower than its identical twin still residing in our lab, here on earth. Indeed, upon returning to earth and the lab after some period of time spent in orbit, the elapsed time registered by the returning clock will be less than that of its twin which stayed put on earth even though its run-rate again matches its stationary twin! In case you are wondering, this experiment has indeed been tried many times. Unerringly, the results of such tests support Einstein’s contention that clocks moving with respect to an observer “at rest” will always run slower (as recorded by the observer) than they would were they not moving relative to the observer. Since the constant speed of light is 186,000 miles per second based on the dictates of relativity, the tiny time dilation which an orbital speed of 18,000 miles per hour would produce could only be observed using such an incredibly stable, high resolution time-source as an atomic clock. If two identical clocks passed each other traveling at one-third the speed of light, the “other” clock would seem to have slowed by 4.6%. At one-tenth the speed of light, the “other” clock slows by only 0.5%. This phenomena of slowing clocks applies to any timekeeper – from atomic clocks to hourglasses. Accordingly, the effect is not related to any construction aspects of timekeepers, only to our limitation “to observe” imposed by the non-infinite, constant speed of light dictated by relativity.

For most practical systems that we deal with, here on earth, relative velocities between systems are peanuts compared to the speed of light and the relativistic effects, although always present, are so small as to be insignificant, usually undetectable. There are important exceptions, however, and one of the most important involves the GPS (Global Positioning System). Another exception involves particle accelerators used by physicists. The GPS system uses earth-orbiting satellites traveling at a tiny fraction of the speed of light relative to the earth’s surface. In a curious demonstration of mathematical déjà vu when recalling the problem of finding the longitude-at-sea, even tiny variations in the timing signals sent between the satellites and earth can cause our position information here on earth to off by many miles. With such precise GPS timing requirements, the relativistic effect of time dilation on orbiting clocks – we are talking tiny fractions of a second! – would be enough to cause position location errors of many miles! For this reason, relativity IS and must be taken into account in order for the GPS system to be of any practical use whatsoever!

Is it not ironic that, as in the longitude-at-sea problem three centuries ago, accurate time plays such a crucial role in today’s satellite-based GPS location systems?

I hope this post has succeeded in my attempt to convey to you, the reader, the wonderful mysteries and importance of that elusive notion that we call time.

Finally, as we have all experienced throughout our lives, time is short and….

TIME AND TIDE WAIT FOR NO MAN

 

Bernie Sanders for President? Tackling America’s Big Problem

The Money

These are fascinating times in this United States of America! Who will be elected president in 2016 to lead this country across the troubled waters which lie ahead? The story of this election campaign is materializing as I write these very words. Chapter two of the narrative begins after the election results from New Hampshire’s primaries this week which saw Donald Trump and Bernie Sanders emerge as clear winners.

There is much to be said about this election campaign and the amazing, atypical roster of candidates who have emerged, but I focus on three salient points:

Point one: That the current front-runners (yes, it is early), Trump and Sanders are most improbable/unusual candidates. On the one hand, Donald Trump is an outspoken, high-profile, multi-billionaire capitalist with a show-biz flair but no political experience, whatsoever. On the other hand, Senator Bernie Sanders characterizes himself as a Democratic Socialist – hardly the historical caricature of your viable presidential candidate!

Point two: The American electorate is desperately disgusted with Washington politics and politicians who perpetuate the “art” of procrastination and indecisiveness. It is clear that Trump and Sanders are where they are because they present voters with radical departures from the status-quo.

Point three: Both of these candidates have taken the plunge into the deep, treacherous waters of America’s most serious problem – especially Sanders.

What is the greatest threat to the United States of America?

Answer: The fact that Abraham Lincoln’s government “of the people, by the people, and for the people” has been hijacked by wealthy, special interests from industry and Wall Street. I have long been convinced that the situation poses a dangerous threat to the viability of our American democracy. It would seem that Senator Sanders has reached a similar conclusion along with many of our citizens who look askance at the gross wealth inequality which reigns supreme in America.

I recall a trip to Disneyland’s Tomorrowland when I was a young man: My family was listening to a speech by Abraham Lincoln realistically delivered by Disney’s “Lincoln automaton” (programmed robot). In the speech, Lincoln declared that, should the United States ever fail, its demise will come from forces within, not from outside the country. It was abundantly clear to me that Lincoln was warning about both citizen apathy/polarization, and the corrosiveness of internal corruption.

Donald Trump’s willingness to “damn the torpedoes” and say whatever is really on his mind was on full display in the first Republican debate when he wagged his finger disapprovingly at the influence special interests have on the decisions and functioning of our government. He insisted that he should know as well as anyone how the system works for the wealthy, because he, as a developer/capitalist, has taken advantage of the opportunities that the law allows! How refreshing was that honest admission and his subsequent stand that special interests have too much sway on our government by way of campaign contributions?

The Bernie Sanders Solution: Rein-in the Special Interests

 For anyone like me who is well aware of Wall Street’s recklessness, Sanders’ contention that our government is being steered by special interests is a resonating bell-tone. Few serious people will forget the near collapse of this country’s entire financial system back in 2007/2008 (yes, it almost happened!) and the role played by the greed and influence of Wall Street banks and investment houses. Hundreds of billions of dollars were lost, much of that by middle-class Americans, during the recovery process and the bail-out of Wall Street. Countless lives were changed forever thanks to the reckless, greedy actions of Wall Street and the banks as they parlayed their securitized and scrubbed, sub-prime home mortgage con game into huge profits…and, yet, not one of the well-documented protagonists ever spent a day in jail for it.

For anyone who needs to be convinced just how close this country came to financial/global Armageddon, I recommend the Frontline documentary, Inside the Meltdown. Michael Lewis, in his book (and the current popular movie) titled The Big Short reveals just how corrupt and/or ignorant were the people in both government and the private sector who allowed all this to happen. And make no mistake: Nothing has changed enough since that narrow escape to prevent a worse, future financial calamity from happening again.

When asked how he intends to change the ways of Congress and Wall Street should he gain the White House, Sanders cites his “popular revolution” as the vehicle. Indeed, he has touched a sensitive nerve in the populace as evidenced by the response received by his message about wealth inequality and the people’s government being increasingly controlled by wealthy special interests. Is Sanders a head-in-the-clouds liberal who does not know what he is tackling? After listening carefully to him, I think not!

 Just How Will This Work, Senator Sanders?

 A media political pundit (there are a lot of them) asked Sanders just the other day, “How will you possibly get an often self-serving Congress to wean themselves from the campaign contributions which fuel their constant drive for re-election? Who, in a position to matter, would shun the money? Do you think YOU can change their minds and enact laws which eliminate campaign contributions?”

At that point, Sanders proved to me his mettle with his quiet but firm answer (paraphrased): “No, the public will change their minds.” He reiterated and emphasized that his strategy involves a “popular revolution.” He did not have the opportunity to elaborate further, but I can imagine what his strategy might be. I envision a successful attempt to ban outside money and influence from our government process proceeding in two steps:

Step 1: Establish a generous election campaign fund (including network time) paid for by taxpayers and equally divided among all “qualified” candidates for major office. I am certain that an acceptable winnowing process can be established to narrow the field, initially.

Step 2: The executive branch (the president) drafts a written oath of office whereby major Washington office-holders and seekers can choose to swear to abstain from all moneys collected from special interests – under penalty of perjury. Any incumbent or candidate who does not sign the oath will be listed in the “nay” column of a listing which is readily available for all the public to see. Given the current mood of the electorate, I would hope that those who resisted signing the pledge to forego private campaign finance would see future voter support at the polls seriously dinged. That approach would, indeed, represent the public changing the minds of Congress – as Sanders intimated! Sanders must surely have something similar in mind in order to give his popular revolution some teeth!.

 Have You Ever Wondered Why Our Tax Code Is So Complicated?

 Here is the answer to the question. The intricate loop-holes and deductions in today’s huge tax code are symbolic footprints left behind by special-interest lobbyists and their lawyers who have, over many decades, chiseled away at tax code simplicity, creating special exceptions (loop-holes) in order to benefit their wealthy clients. Such clients are heavily represented in the top 0.1% of the population who now owns more wealth than the bottom 90% of Americans. Funny how that happens, isn’t it? By the way, I am in favor of raising marginal tax brackets up to at least 50% (with no loop-holes) for those making over ten million dollars a year, rising to 80% for incomes over fifty million – not to exact revenge on successful people, but to discourage the rampant greed and speculation which today’s 39% bracket (complete with loop-holes) encourages. I wonder how the rich ever got the marginal rate reduced from the 90% level it had reached during the Eisenhower administration….I wonder.

One of the worst Decisions Washington Ever Made!

 I agree with Bernie Sanders that the 1999 repeal of the Glass-Steagall Act was a terrible move. Glass-Steagall was enacted in 1932/33 to separate savings and loan banks from Wall Street investment banks. The great depression made clear the need for such legislation. Most people with their precious savings held by a bank do not want that bank making risky Wall Street investments with their hard-earned money – never mind what the FDIC says it guarantees. Greed-induced gambling with the money of America nearly resulted in Washington’s inability to contain the financial chain-reaction which began in 2007. Back in 2008, other than Bear Stearns and Lehman Brothers which did go under, it was clear that without a taxpayer bail-out, systemic failure of the system could destroy this country’s entire economy. Call it “taking one” by the taxpayer for the greedy and incompetent.

Why was Glass-Steagall repealed in 1999 during the Clinton administration? I do not know the answer to that one, but I would wager that lobbyist’s footprints were prevalent along the paths leading to Congressional offices – wouldn’t you?

 Where Does Hillary Clinton Stand?

 Hillary Clinton insists that she is serious about the lobbyist problem, yet I have not heard her call for the reinstatement of Glass-Steagall. I wonder specifically what her plan would be (beyond invoking the reactionary legislation of Dodd-Frank) to proactively restore the full attention of Congress to the business of the people?

At one point in last night’s democratic debate between Sanders and Clinton, she took personal umbrage at Sanders’ insinuation that her $600,000 speaker’s fee received from Goldman Sachs over the past year is unacceptable. Clinton said she would never be swayed in her vote by campaign favors. Sanders missed his chance by not retorting that not everyone in government might possess such high personal standards – a safe bet, I will wager.

Sanders did groan, “Let’s not insult the intelligence of the American people” (my paraphrase) – a remark surely made not to refute her personal integrity in the matter, but to demonstrate the absurdity of blithely dismissing the corrosive power of lobbying on our over-all system of governance. In many crumbling parts of the world, they call it bribery – the need to pay money for a favor…or even for a fair shake. Sanders sarcastically asked (paraphrased), “Why would the wealthy do that with their money? Do they enjoy throwing their money around?”

Lincoln_1I hardly believe that Abraham Lincoln, politically savvy as he was, could countenance the form of bribery present in America today. At the time, Lincoln was correct when he ventured that America had more to fear from within than from without. In all fairness, he could little imagine that other immense threat to us all that has since materialized – an unstable nuclear world. May divine providence provide “we the people” with the leadership we so desperately need along with the popular will and good sense to vigilantly guard our democracy and our freedoms.

Relativity and the Birth of Quantum Physics: Two Major Problems for Physics in the Year 1900

Max-Planck-[1]In the year 1900, two critical questions haunted physicists, and both involved that elusive entity, light. The ultimate answers to these troublesome questions materialized during the dawn of the twentieth century and resulted in the most recent two of the four major upheavals in the history of physics. Albert Einstein was responsible for the third of those four upheavals in the form of his theory of special relativity which he published in 1905. Einstein’s revolutionary theory was his response to one of those two critical questions facing physics in the year 1900. A German scientist named Max Planck addressed the second critical question while igniting the fourth great upheaval in the history of physics. Max Planck began his Nobel Prize-winning investigation into the nature of heat/light radiation in the year 1894. His later discovery of the quantized nature of such radiation gave birth to the new realm of quantum physics which, in turn, led to a new picture of the atom and its behavior. Planck’s work directly addressed the second critical question nagging science in 1900. The aftermath of his findings ultimately changed physics and man’s view of physical reality, forever.

What were the two nagging problems in physics in 1900?

The nature of light and its behavior had long challenged the best minds in physics. For example: Is light composed of “particles,” or does it manifest itself as “waves” travelling through space? By the eighteenth century, two of science’s greatest names had voiced their opinions. Isaac Newton said that light is “particle” in nature. His brilliant French contemporary, Christian Huygens, claimed that light is comprised of “waves.”

Newton_Kneller_ 1702_1         huygens[1]

                  Isaac Newton                                                      Christian Huygens

By 1865, the great Scottish physicist, James Clerk Maxwell, had deduced that light, indeed, acted as an electromagnetic wave traveling at a speed of roughly 186,000 miles per second! Maxwell’s groundbreaking establishment of an all-encompassing electromagnetic theory represents the second of the four major historical revolutions in physics of which we speak. Ironically, this second great advance in the history of physics with its theoretically established speed of light led directly to the first of the two nagging issues facing physics in 1900. To understand that dilemma, a bit of easily digestible background is in order!

Maxwell began by determining that visible light is merely a small slice of the greater electromagnetic wave frequency spectrum which, today, includes radio waves at the low frequency end and x-rays at the high frequency end. Although the speed of light (thus all electromagnetic waves) had been determined fairly accurately by experiments made by others prior to 1865, Maxwell’s ability to theoretically predict the speed of light through space using the mathematics of his new science of electrodynamics was a tribute to his supreme command of physics and mathematics. The existence of Maxwell’s purely theoretical (at that time) electromagnetic waves was verified in 1887 via laboratory experiment conducted by the German scientist, Heinrich Hertz.

The first of the two quandaries on physicist’s minds in 1900 had been brewing during the latter part of the nineteenth century as physicists struggled to define the “medium” through which Maxwell’s electromagnetic waves of light propagated across seemingly empty space. Visualize a small pebble dropped into a still pond: Its entry into the water causes waves, or ripples, to propagate circularly from the point of disturbance. These “waves” of water represent mechanical energy being propagated across the water. Light is also a wave, but it propagates through space and carries electromagnetic energy.

Here is the key question which arose from Maxwell’s work and so roiled physics: What is the nature of the medium in presumably “empty space” which supports electromagnetic wave propagation…and can we detect it? Water is the obvious medium for transmitting the mechanical energy waves created by a pebble dropped into it. Air is the medium which is necessary to propagate mechanical sound-pressure waves to our ears – no air, no sound! Yet light waves travel readily through “empty space” and vacuums!

Lacking any evidence concerning the nature of a medium suitable for electromagnetic wave propagation, physicists nevertheless came up with a name for it….the “ether,” and pressed on to learn more about its presumed reality. Clever but futile attempts were made to detect the “ether sea” through which light appears to propagate. The famous Michelson-Morley experiments of 1881 and 1887 conclusively failed to detect ether’s existence. Science was forced to conclude that there is no detectable/describable medium! Rather, the cross-coupled waves of Maxwell’s electric and magnetic fields which comprise light (and all electromagnetic waves) “condition” the empty space of a perfect vacuum in such a manner as to allow the waves to propagate through that space. In expressing the seeming lack of an identifiable transmission medium and what to do about it, the best advice to physicists seemed: “It is what it is….deal with it!”

“Dealing with it” was easier said than done, because one huge problem remained. Maxwell and his four famous “Maxwell’s equations” which form the framework for all electromagnetic phenomena calculate one and only ONE value for the speed of light – everywhere, for all observers in the universe. One single value for the speed of light would have worked for describing its propagation speed relative to an “ether sea,” but there is no detectable ether sea!

The Great “Ether Conundrum” – Addressed by Einstein’s Relativity

In the absence of an ether sea through which to measure the speed of light as derived by Maxwell, here is the problem which results, as illustrated by two distant observers, A and B, who are rapidly traveling toward each other at half the speed of light: How can a single, consistent value for the speed of light apply both to the light measured by observer A as it leaves his flashlight (pointed directly at observer B) and observer B who will measure the incoming speed of the very same light beam as he receives it? Maxwell’s equations imply that each observer must measure the same beam of light at 186,000 miles per second, measured with respect to themselves and their surroundings – no matter what the relative speed between the two observers. This made no sense and represented a very big problem for physicists!

The Solution and Third Great Revolution in Physics:
 Einstein’s Relativity Theories

As already mentioned, the solution to this “ether dilemma” involving the speed of light was provided by Albert Einstein in his 1905 theory of special relativity – the third great revolution in physics. Special relativity completely revamped the widely accepted but untenable notions of absolute space and absolute time – holdovers from Newtonian physics – and time and space are the underpinnings of any notion/definition of “speed.” Einstein showed that a strange universe of slowing clocks and shrinking yardsticks is required to accommodate the constant speed of light for all observers regardless of their relative motion to each other. Einstein declared the constant speed of light for all observers to be a new, inviolable law of physics. Furthermore, he proved that nothing can travel faster than the speed of light.

The constant speed of light for all observers coupled with Einstein’s insistence that there is no way to measure one’s position or speed/velocity through empty space are the two notions which anchor special relativity and all its startling ramifications.

 The Year is 1900: Enter Max Planck and Quantum Physics –
The Fourth Great Revolution in Physics

The second nagging question facing the physics community in 1900 involved the spectral nature of radiation emanating from a so-called black-body radiator as it is heated to higher and higher temperatures. Objects that are increasingly made hotter emanate light whose colors change from predominately red to orange to white to a bluish color as the temperature rises. A big problem in 1900 was this: There is little experimental evidence indicating large levels of ultraviolet radiation produced at high temperatures – a situation completely contrary to the theoretical predictions of physics based on our scientific knowledge in the year 1900. Physics at that time predicted a so-called “ultraviolet catastrophe” at high temperatures generating huge levels of ultraviolet radiation – enough to damage the eyes with any significant exposure. The fact that there was no evidence of such levels of ultraviolet radiation was, in itself, a catastrophe for physics because it called into serious question our knowledge and assumptions of the atomic/molecular realm.

The German physicist, Max Planck, began tackling the so-called “ultraviolet catastrophe” disconnect as early as 1894. Using the experimental data available to him, Planck attempted to discern a new theory of spectral radiation for heated bodies which would match the observed results. Planck worked diligently on the problem but could not find a solution by working along conventional lines.

Finally, he explored an extremely radical approach – a technique which reflected his desperation. The resulting new theory matched the empirical results perfectly!

When Planck had completed formulation of his new theory in 1900, he called his son into his study and stated that he had just made a discovery which would change science forever – a rather startling proclamation for a conservative, methodical scientist. Planck’s new theory ultimately proved as revolutionary to physics as was Einstein’s theory of relativity which would come a mere five years later.

Max Planck declared that the radiation energy emanating from heated bodies is not continuous in nature; that is, the energy radiates in “bundles” which he referred to as “quanta.” Furthermore, Planck formulated the precise numerical values of these bundles through his famous equation which states:

 E = h times Frequency

where “h” is his newly-declared “Planck’s constant” and “Frequency” is the spectral frequency of the radiation being considered. Here is a helpful analogy: The radiation energy from heated bodies was always considered to be continuous – like water flowing through a garden hose. Planck’s new assertion maintained that radiation comes in bundles whose “size” is proportional to the frequency of radiation being considered. Visualize water emanating from a garden hose in distinct bursts rather than a continuous flow! Planck’s new theory of the energy “quanta” was the only way he saw fit to resolve the existing dilemma between theory and experiment.

The following chart reveals the empirical spectral nature of black-body radiation at different temperatures. Included is a curve which illustrates the “ultraviolet catastrophe” at 5000 degrees Kelvin predicted by (1900) classical physics. The catastrophe is represented by off-the-chart values of radiation in the “UV” range of short wavelength (high frequency).

Black_body copy

This chart plots radiated energy (vertical axis) versus radiation wavelength (horizontal axis) plotted for each of three temperatures in degrees K (degrees Kelvin). The wavelength of radiation is inversely proportional to the frequency of radiation. Higher frequency ultraviolet radiation (beyond the purple side of the visible spectrum) is thus portrayed at the left side of the graph (shorter wavelengths).

Note the part of the radiation spectrum which consists of frequencies in the visible light range. The purple curve for 5000 degrees Kelvin has a peak radiation “value” in the middle of the visible spectrum and proceeds to zero at higher frequencies (shorter wavelengths). This experimental purple curve is consistent with Planck’s new theory and is drastically different from the black curve on the plot which shows the predicted radiation at 5000 degrees Kelvin using the scientific theories in place prior to 1900 and Planck’s revolutionary findings. Clearly, the high frequency (short wavelength) portion of that curve heads toward infinite radiation energy in the ultraviolet range – a non-plausible possibility. Planck’s simple but revolutionary new radiation law expressed by E = h times Frequency served to perfectly match theory with experiment.

Why Max Planck Won the 1918 Nobel Prize
in Physics for His Discovery of the Energy Quanta

One might be tempted to ask why the work of Max Planck is rated so highly relative to Einstein’s theories of relativity which restructured no less than all of our assumptions regarding space and time! Here is the reason in a nutshell: Planck’s discovery led quickly to the subsequent work of Neils Bohr, Rutherford, De Broglie, Schrodinger, Pauli, Heisenberg, Dirac, and others who followed the clues inherent in Planck’s most unusual discovery and built the superstructure of atomic physics as we know it today. Our knowledge of the atom and its constituent particles stems directly from that subsequent work which was born of Planck and his discovery. The puzzling non-presence of the “ultraviolet catastrophe” predicted by pre-1900 physics was duly answered by the ultimate disclosure that the atom itself radiates in discrete manners thus preventing the high ultraviolet content of heated body radiation as predicted by the old, classical theories of physics.

Albert Einstein in 1905: The Photoelectric Effect –
Light and its Particle Nature

Published in the same 1905 volume of the German scientific journal, Annalen Der Physik, as Einstein’s revolutionary theory of special relativity, was his paper on the photoelectric effect. In that paper, Einstein described light’s seeming particle behavior. Electrons were knocked free of their atoms in metal targets by bombarding the targets with light in the form of energy bundles called “photons.” These photons were determined by Einstein to represent light energy at its most basic level – as discrete bundles of light energy. The governing effect which proved revolutionary was the fact that the intensity of light (the number of photons) impinging on the metal target was not the determining factor in their ability to knock electrons free of the target: The frequency of the light source was the governing factor. Increasing the intensity of light had no effect on the liberation of electrons from their metal atoms: The frequency of the light source had a direct and obvious effect. Einstein proved that these photons, these bundles of light energy which acted like bullets for displacing electrons from their metal targets, have discrete energies whose values depend only on the frequency of the light itself. The higher the frequency of the light, the greater is the energy of the photons emitted. As with Planck’s characterization of heat radiation from heated bodies, photon energies involve Planck’s constant and frequency. Einstein’s findings went beyond the quanta energy conceptualizations of Planck by establishing the physical reality of light photons. Planck interpreted his findings on energy quanta as atomic reactions to stimulation as opposed to discrete realities. Einstein’s findings earned him the 1921 Nobel Prize in physics for his paper on the photoelectric effect….and not for his work on relativity!

Deja Vu All Over Again: Is Light a Particle or a Wave?

My EinsteinAlong with Planck, Einstein is considered to be “the father of quantum physics.” The subsequent development by others of quantum mechanics (the methods of dealing with quantum physics) left Einstein sharply skeptical. For one, quantum physics and its principle of particle/wave duality dictates that light behaves both as particle and wave – depending on the experiment conducted. That, in itself, would trouble a physicist like Einstein for whom deterministic (cause and effect) physics was paramount, but there were other, startling ramifications of quantum mechanics which repulsed Einstein. The notion that events in the sub-atomic world could be statistical in nature rather than cause-and-effect left Einstein cold. “God does not play dice with the universe,” was Einstein’s opinion. Others, like the father of atomic theory, Neils Bohr, believed the evidence undeniable that nature is governed at some level by chance.

In one of the great ironies of physics, Einstein, one of the two fathers of quantum physics, felt compelled to abandon his brain-child because of philosophical/scientific conflicts within his own psyche. He never completely came to terms with the new science of quantum physics – a situation which left him somewhat outside the greater mainstream of physics in his later years.

Like Einstein’s relativity theories, quantum physics has stood the test of time. Quantum mechanics works, and no experiments have ever been conducted to prove the method wrong. Despite the truly mysterious realm of the energy quanta and quantum physics, the science works beautifully. Perhaps Einstein was right: Quantum mechanics, as currently formulated, may work just fine, but it is not the final, complete picture of the sub-atomic world. No one could appreciate that possibility in the pursuit of physics more than Einstein. After all, it was his general theory of relativity in 1916 which replaced Isaac Newton’s long-held and supremely useful force-at-a-distance theory of gravity with the more complete and definitive concept of four-dimensional, curved space-time.

By the way, and in conclusion, it is Newton’s mathematics-based science of dynamics (the science of force and motion) that defines the very first major upheaval in the history of physics – as recorded in his masterwork book from 1687, the Principia – the greatest scientific book ever written. Stay tuned.

Happy New Year!

WordPress has issued its 2015 summary for Reason and Reflection, and I am pleased to have had some 14,000 views of my posts from 123 countries around the world. Thanks to all my readers and blog followers for that gratifying response to my work.

I would like to receive more comments on my posts, so I encourage you to use the “Leave a Reply” or “Leave a Comment” links provided after every post. I answer all legitimate responses which WordPress passes along! To receive an E-mail notification every time a new post appears, click the grey “Follow” button on my blog page.

I will continue to strive to post on entertaining and enlightening topics throughout 2016 – Happy New Year! 

The WordPress.com stats helper monkeys prepared a 2015 annual report for this blog.

Here’s an excerpt:

The concert hall at the Sydney Opera House holds 2,700 people. This blog was viewed about 14,000 times in 2015. If it were a concert at Sydney Opera House, it would take about 5 sold-out performances for that many people to see it.