Hermann Minkowski, Albert Einstein and Four-dimensional Space-time

Is the concept of free-will valid as it relates to humans? A mathematics lecture presented in September of 1908 in Cologne, Germany by Hermann Minkowski not only paved the way for the successful formulation of Albert Einstein’s general theory of relativity in 1916, it also forced us to completely revamp our intuitions regarding the notion of time and space while calling into question the concept of human free-will! Some brief and simplified background is in order.

Prior to Minkowski’s famous lecture concerning Raum Und Zeit (Space and Time), the fabric of our universe was characterized by three-dimensional space accompanied by the inexorable forward flow of time. The concept of time has long been a stubbornly elusive notion, both in philosophy and in physics. From the mid-nineteenth century onward, there had increasingly been problems with our conception of “time.” The difficulties surfaced with the work of James Clerk Maxwell and his mathematical characterization of electromagnetic waves (which include radio waves and even light) and their propagation through space. Maxwell revealed his milestone “Maxwell’s equations” to the world in 1865. His equations have stood the test of time and remain the technical basis for today’s vast communication networks. But there was a significant problem stemming from Maxwell’s work, and that was his prediction that the speed of light propagation (and that of all electromagnetic waves) is constant for all observers in the universe. Logically, that prediction appeared to be implausible when carefully examined. In fact, notice of that implausibility stirred a major crisis in physics during the final decades of the nineteenth century. Einstein, Poincare, Lorentz and many other eminent physicists and mathematicians devoted much of their time and attention to the seeming impasse during those years.

Enter Einstein’s special theory of relativity in 1906

In order to resolve the dilemma posed by Maxwell’s assertion of a constant propagation speed for light and all related electromagnetic phenomena, Albert Einstein formulated his special theory of relativity which he published in 1906. Special relativity resolved the impasse created by Maxwell by introducing one of the great upheavals in the history of science. Einstein posited three key stipulations for the new physics:

A new law of physics: The speed of light is constant as determined by all “observers” in the universe, no matter what their relative motion may be with respect to a light source. This, in concert with the theoretically-based dictate from Maxwell that the speed of light is constant for all observers. Einstein decreed this as a new fundamental law of physics. In order for this new law to reign supreme in physics, two radical concessions regarding space and time proved necessary.
Concession #1: There exists no absolute measure of position and distance in the universe. Stated another way, there exists no reference point in space and no absolute framework for determining distance coordinates. One result of this: consider two observers, each with his own yardstick, whose platforms (habitats, or “frames of reference,” as it were) are moving relatively to one another. At rest with respect to one another, each observer sees the other’s yardstick as identical in length to their own. As the relative velocity (speed) between the two observers and their platforms increases and approaches the constant speed of light (roughly 186,000 miles per second), the other observer’s “yardstick” will increasingly appear shorter to each observer, even though, when at relative rest, the two yardsticks appear identical in length.
Concession #2: There is no absolute time-keeper in the universe. The passage of time depends on one observer’s velocity with respect to another observer. One result of this: consider our same two observers, each with their own identical clocks. At rest with respect to one another, each observer sees the other’s clock as keeping perfect time with their own. As the relative velocity (speed) between the two observers and their platforms increases and approaches the constant speed of light, the other observer’s clock appears increasingly to slow down relative to their own clock which ticks merrily along at its constant rate.

Needless to say, the appearance in 1906 of Einstein’s paper on special relativity overturned many long-held assumptions regarding time and space. Einstein dissolved Isaac Newton’s assumptions of absolute space and absolute time.The new relativity physics of Einstein introduced a universe of shrinking yardsticks and slowing clocks. It took several years for Einstein’s new theory to gain acceptance. Even with all these upheavals, the resulting relativistic physics maintained the notion of (newly-relative) spatial frames defined by traditional coordinates in three mutually perpendicular directions: forward/backward, left/right, and up/down.

Also still remaining was the notion of time as a (newly-relative) measure which still flows inexorably forward in a continuous manner. As a result of the special theory, relativistic “correction factors” were required for space and time for observers and their frames of reference experiencing significant relative, velocities.

This framework of mathematical physics worked splendidly for platforms or “frames of reference” (and their resident observers) experiencing uniform relative motion (constant velocity) with respect to each other.

The added complications to the picture which result from including accelerated relative motions (the effect of gravity included) complicated Einstein’s task enormously and set the great man on the quest for a general theory of relativity which could also accommodate accelerated motion and gravity.

Einstein labored mightily on this new quest for almost ten years. By 1913, he had approached the central ideas necessary for general relativity, but the difficulties inherent in elegantly completing the task were seriously beginning to affect his health. In fact, the exertion nearly killed Einstein. The mathematics necessary for success was staggering, involving a complex “tensor calculus” which Einstein was insufficiently prepared to deal with. In desperation, he called his old friend from university days, Marcel Grossman, for help. Grossman was a mathematics major at the Zurich Polytechnic, and it was his set of class notes that saved the day for young Einstein on the frequent occasions when Einstein forsook mathematics lectures in favor of physics discussions at the local coffee houses. Grossman’s later assistance with the requisite mathematics provided a key turning point for Einstein’s general theory of relativity.

Enter Hermann Minkowski with Raum Und Zeit

The initial 1909 publication of Raum Und Zeit

On September 8, 1908 in Cologne, Germany, the rising mathematics star, Hermann Minkowski, gave a symposium lecture which provided the elusive concepts and mathematics needed by Einstein to elegantly complete his general theory of relativity. Similar to Einstein’s 1906 special theory of relativity, the essence of Minkowski’s contribution involved yet another radical proposal regarding space and time. Minkowski took the notion of continuously flowing time and melded it together with the three-dimensional coordinates defining space to create a new continuum: four-dimensional space-time which relegated the time parameter to a fourth coordinate point in his newly proposed four-dimensional space-time.

Now, just as three coordinate points in space specify precisely one’s physical location, the four-dimensional space-time continuum is an infinite collection of all combinations of place and time expressed in four coordinates. Every personal memory we have of a specific place and time – each event-instant in our lives – is defined by a “point” in four-dimensional space-time. We can say we were present, in times past, at a particular event-instant because we “traversed-through” or “experienced” a specific four-dimensional coordinate point in space-time which characterizes that particular event-instant. That is very different from saying we were positioned in a specific three-dimensional location at a specific instant of time which flows irresistibly only forward.

What do Minkowski’s mathematics imply about human free-will?

By implication, the continuum of four-dimensional space-time includes not only sets of four coordinate points representing specific events in our past (place and “time”), the continuum must include points specifying the place and “time” for all future events. This subtly suggests a pre-determined universe, where places and “times” are already on record for each of us, and this implies the absence of free-will, the ability to make conscious decisions such as where we will be and when in the future. This is a very controversial aspect of Minkowki’s four-dimensional space-time with distinctly philosophical arguments.

For certain, however, is the great success Minkowski’s mathematics of space-time has enjoyed as a basis for Einstein’s general theory of relativity. Most, if not all, aspects of Einstein’s special and general theories of relativity have been subjected to extensive experimental verification over many decades. There is no instance of any validly conducted experiment ever registering disagreement with Einstein’s special or general theories. That is good news for Hermann Minkowski, as well.

Minkowski’s new reality takes us beyond the two-dimensional world of a flat piece of paper, through the recent universe of three-dimensional space plus time, and into the brave new world of not only four-dimensional space-time, but curved four-dimensional space-time. The nature of curved space-time serves to replace the Newtonian notion of a gravitational force of attraction which enables the celestial ballet of the heavens. For instance, the orbit of earth around the sun is now regarded as the “natural path” of the earth through the curvature of four-dimensional space-time and not due to any force of attraction the sun exerts on the earth. According to the general theory of relativity, the mass of the sun imposes a curvature on the four-dimensional space-time around it, and it is that curvature which determines the natural path of the earth around the sun. Minkowski and his mathematics provided the final, crucial insight Einstein needed to not only radically redefine the nature of gravity, but to also successfully complete his general theory of relativity in 1916. Einstein’s theory and its revelations are generally regarded as the most significant and sublime product ever to emanate from the human intellect. Take a bow, Albert and Hermann.

My eulogy to Hermann Minkowski

Albert Einstein is assuredly the most recognized individual in human history – both the name and the image, and that is very understandable and appropriate. Very few in the public realm not involved with mathematics and physics have ever even heard the name, “Hermann Minkowski,” and that is a shame, for he was a full participant in Einstein’s milestone achievement, general relativity. Minkowski’s initial 1907 work on Raum Und Zeit came to Einstein’s attention early-on, but its mathematics were well beyond Einstein’s comprehension in that earlier time frame. It was not until several years later, that Einstein and Marcel Grossman began to recognize Minkowski’s gift to general relativity in the form of his mathematics of four-dimensional curved space-time.

Hermann Minkowski delivered his by-then polished lecture on space-time at Cologne, Germany, in September, 1908. Tragically, he died suddenly in January, 1909, at the young age of forty-four – from a ruptured appendix. His latest findings as presented in the Cologne lecture were published in January, 1909, days after his death, sadly.

The “lazy dog” has the last bark

Albert Einstein and Hermann Minkowski first crossed paths during Einstein’s student days at the Zurich Polytechnic, where Minkowski was teaching mathematics to young Einstein. Noting Einstein’s afore-mentioned irregular attendance at lectures in mathematics, the professor reportedly labeled the student Einstein as, “a lazy dog.” Rarely in the annals of human history has such an unpromising prospect turned out so well! I noted with great interest while researching this post that Einstein long regarded mathematics as merely a necessary tool for the advancement of physics, whereas Minkowski and other fine mathematicians of the past tended to consider mathematics as a prime mover in the acquisition and advancement of knowledge, both theoretical and practical; they viewed physics as the fortunate beneficiary of insights that mathematics revealed.

In the late years, Einstein came to appreciate the supremely important role that mathematics plays in the general advancement of science. As proof, I will only add that the great physicist realized his dependence on the mathematicians Grossman and Minkowski in the nick of time to prevent his theory of general relativity from going off the rails, ending on the scrap heap, and leaving Albert Einstein a completely spent physicist.

Note: For a detailed tour and layperson’s explanation of Einstein’s relativity theories, click on the image of my book: The Elusive Notion of Motion – The Genius of Kepler, Galileo, Newton, and Einstein – available on Amazon

Toulouse Nuts: Flying the Collings Foundation P-51D Mustang (Post-Script)

This post-script to my Reason and Reflection blog post of June 1, 2018 is intended to add some additional details regarding my flight on the Collings Foundation P-51 Mustang, Toulouse Nuts, on May 28, 2018 – Memorial Day.
Flying a P-51 had long topped my personal “bucket-list.” I begin by briefly reconstructing parts of two older blog posts to provide some background.

On July 6, 2016, I posted this on my blog:

The Iconic P-51 Mustang: The Fighter That Destroyed
Hitler’s Luftwaffe and Won the War

P51-7[1]

Last month, I had yet another opportunity to ride in and fly one of the most iconic military aircraft of all time, the North American P-51 Mustang. Sadly, it did not happen. Maybe next year!

I ended that post with the following:

Perhaps next year, when the Collings Foundation tour returns, I will have an extra $2200 to go up in Betty Jane as well as the requisite moxie to do so. I cannot think of a greater, more meaningful thrill.

Sadly, “next year” came and hurtled by without even a visit to nearby Moffett Airfield to see the annual visit of the Collings Foundation Wings of Freedom tour.

Back in March of this year, with “P-51” still in my mind’s eye and at the top of my bucket-list, I visited the Collings Foundation website and discovered that the venerable Betty Jane, their P-51C Mustang, was undergoing a ground-up restoration/upgrade. That was the bad news. The good news: the foundation’s new P-51D, Toulouse Nuts was coming with the tour to Moffett in late May.

Toulouse Nuts_3The “D” version of the P-51 became the iconic manifestation of the storied fighter. Like the Betty Jane, Toulouse Nuts is one of the world’s handful of flying, dual-control Mustangs that enable the passenger to control the airplane from the rear seat. For me, a tremendous advantage of the “D” over the earlier “A” thru “C” versions is the bubble canopy which offers unobstructed, panoramic views fore, aft, sideways and up from the cockpit.

There is a saying among pilots that “an airplane that looks good, generally flies good!” The P-51 Mustang lends full credence to that contention. Its war record and the loyalty earned from the thousands who flew her in air-to-air combat with the Germans and came back alive provide ample testimony. And she is just plain good-looking… on the ground and in the air!

On March 23, 2018, I posted this:

My Father’s Enduring Legacy: A Love of Aviation…
And a Prized Painting on Glass

My father was a most remarkable man. Today, at seventy-seven years of age, I have surpassed his longevity by one year. Even at this advanced age, my appreciation of him and his legacy continues to grow with passing time. There is much I could say about my father’s innate personal honesty, integrity, ambition, and commitment to excellence in all things, but I choose to dedicate this post to one particular aspect of his life and passion: His love of aviation and airplanes.

IMG_0582PS2

Here is the most important, early manifestation of that legacy for me, personally: a painting of his which is prominent in my earliest recollections of childhood.

I can still visualize this painting hanging on my bedroom wall in Chicago, Illinois when I was a youngster of six or seven. Today, this brilliantly created image hangs proudly in my den, high on the wall. Often, when in a pensive mood, I look upward and turn toward this painting for reflection, inspiration, and a renewed sense of longevity and permanence, qualities so absent in today’s peripatetic world. Few memories of mine go further back in time than this depiction of a furious World War I dogfight painted by my teen-age father around 1934/35. Correspondingly, few “things” in my life have been with me for as long as this little gem, painted on the back of glass using ordinary house-paints! My father’s family had no money for artist’s materials, so he did the best he could with what he had. His life-long ability to produce exceptional results in any endeavor is already evident in the clean, precise lines and brilliant images he produced while painting on the back of glass – a very difficult medium, indeed.

I concluded that post as follows:

Prey for Mercy Print Display

The Legacy Continues!

My enthusiasm for aviation is hardly satisfied at this late date; there are still so many books on my shelves and stories waiting in the wings. Most significantly, both my curiosity about and my fascination with this life-long legacy of aviation gifted to me by my Father, Alfred Chester Kubitz, are still running strong. Time is running short, now, but the skies still beckon!

That last sentence, “Time is running short, now, but the skies still beckon!” soon proved to be a catalyst for me. My perusal of that statement after the post was published served to rejuvenate my quest for “the P-51 experience” which would become a reality in the cloudless, cobalt-blue sky over Livermore Municipal Airport on May 28, 2018 – Memorial Day.

Now, there were only two obstacles: the $2200 ticket-to-ride and the requisite moxie “to just go for it!”

The paraphrased quote from Mark Twain mentioned in my original post proved the antidote to cogitating any further about item number one on my bucket-list of things to do before I leave this world:

“You will regret most the things in life you did not do, not the things you did.”

Amen. Damn the torpedos: go for it!

I dialed-up the Collings Foundation in late March to assure myself that I had plenty of time to reserve my half-hour, adventure-of-a-lifetime on Toulouse Nuts. I was quite certain that reserving a week ahead of time would suffice. We had planned a trip to Irvine, California to visit our daughter for a few days about a week and a half before the Wings of Freedom tour was arriving at Moffett Field; there would be plenty of time to reserve a flight.

Who Invited Back Spasms to the Party?

Not in my plans, however, were the back spasms that suddenly hit me one morning while on the road – the result of abandoning my daily exercise regimen while traveling. This bout was worse than most I had in the past, and I spent the remainder of the trip barely able to move about. Back at home, I thought a few days rest there would solve my problem, but such was not the case. There was simply no way I was going to be able to clamber up onto the wing and into the cramped cockpit of a P-51 with a bad back. Finally, after a few more days passed, my back improved, but it was still questionable. And then the weather was cloudy and overcast for yet a few more days, hardly ideal for such a milestone flight. As my back condition and the weather were both finally improving, the tour and Toulouse Nuts were ready to move on to their next tour stop – Livermore, California, some fifty miles north of here. I called Collings in the hope that they might have a last-minute flight-time open prior to packing-up at Moffett and heading for Livermore, but, alas, it was not to be. Apparently, my P-51 flight experience was not happening this year, either, despite my determined decision to actually do it and my best efforts to make it happen! It was more than disappointing. Depressing was a more apt description given the vagaries of the variables involved: me not getting any younger, and the ever-present uncertainties regarding vintage aircraft. Despite the fine track record of the Collings Foundation, there was no guarantee that Toulouse Nuts would be available and ready to fly the tour next year. And there certainly was no guarantee that I would be present and ready to fly! I resigned myself to the realization that the top item on my personal bucket-list would remain in-place for at least another year.

Livermore Municipal Airport – The Tour’s Next Stop

As luck would have it, Linda and I had planned to drive north to the town of Pleasanton on Sunday, May 27th, the day before Memorial Day. The main street of the quaint town would play host to dozens of antique and collectibles dealers, stretching for blocks through town – all part of the annual antique fair held there and an event we had enjoyed in the past. By that time, my back was feeling much better. The evening before heading to Pleasanton, I recalled the fact that the Collings tour’s next stop after Moffett Field was Livermore Municipal Airport. Knowing that Livermore was somewhere in the general vicinity of Pleasanton, I checked the map. Indeed, the airport at Livermore was no more than a fifteen-minute drive from where we would be. Linda agreed that, after spending the morning antiquing in Pleasanton, we should head over to catch the Wings of Freedom tour at Livermore.

After getting a bit lost on the way over, we arrived at Livermore Municipal Airport, a beautiful, small-scale layout located amid picturesque hills and grassy plains – an almost pastoral scene as opposed to the huge concrete expanses of Moffett Field. Sure enough, there were our old friends, the vintage B-17 bomber Nine ‘O Nines, and the venerable B-24 Liberator, Witchcraft, the last one of its genre still flying (18,500 built in total). Linda and I first attended the tour back in 2013 at Moffett Field, and we clambered at our leisure though every nook and cranny of both airplanes – a delightful and eye-opening experience! We purposely went early on a weekday morning when we had the airplanes to ourselves. An added attraction at Livermore this year was a B-25 Mitchell medium-range, twin-engine bomber also owned by the Collings Foundation.

IMG_2347

As we walked up to the entrance to pay the nominal admission charge, a very large big-band ensemble of young musicians struck-up Glenn Miller’s timeless hit from the early 40’s, In the Mood. That was a total surprise which immediately put us “in the mood” for the whole afternoon. There were flags, music, hot dogs, and all things requisite for a memorable Memorial Day holiday. Linda and I decided right then and there that we loved the atmosphere and that this was the way to see the Wings of Freedom tour!

And there, on the tarmac, was Toulouse Nuts, the P-51D that remained stubbornly stuck in the recesses of my mind. She was obviously busy taking lucky folks with a flight appointment and $2200 up for a ride and the thrill of a lifetime.

I decided then and there that it was now or never for me. We went over to the flight desk and asked if there were any openings for that afternoon. Alas, the answer was no. “How about tomorrow – Memorial Day?” I asked. The girl at the desk said she had an opening at 11:00 am and late in the day at 5:00. I looked at Linda: “Would you like to drive back here, tomorrow?” We decided we would, and I jumped at the 11:00 slot.

Memorial Day, May 28, 2018

The next morning dawned bright and warm across the entire San Francisco Bay Area. The temperature would be in the low 90’s that afternoon at Livermore. After a fifty-minute drive north, we pulled into the friendly airport grounds, easily parked the car, and headed for the tarmac and the planes parked there. At 10:15 am, the holiday crowd was beginning to grow. The cloudless sky was a brilliant cobalt blue: a perfect day for flying if ever there was one! As we passed through the entry gates, I noticed Toulouse Nuts pulling away from its parking spot on the tarmac and heading for the taxi-way and runway. I could discern a passenger in the rear seat – apparently the 10:00 appointment which preceded mine. I felt a rush of excitement in anticipation of soon going up and flying that iconic P-51 warbird. In less than two minutes, my heart fell, almost with a thud, as I spotted Toulouse Nuts working its way back up the taxi-way to its parking spot on the tarmac.

I knew immediately that something serious was wrong, and that my opportunity to fly that afternoon was surely in jeopardy. I could only hope that, perhaps, the passenger had second thoughts after being securely strapped in the cramped cockpit and experiencing, first-hand, the sights, the sounds, and the exhaust smell of that powerful Rolls-Royce/Packard Merlin engine. Alas, that was not the case. The passenger was soon out of the plane standing patiently nearby while the pilot, and a few extra hands conferred. In short order, the pilot and two others began removing aluminum panels from the nose of the airplane. From outside the roped-off security area, Linda and I could only guess as to what the problem might be. A half-hour went by and then an hour…and the sun was heating up the tarmac as work continued on the airplane. We sought relief in the shade provided by the huge wing of the B-24, Witchcraft, parked nearby. Finally, I went back to the roped perimeter and motioned for the “stranded” passenger to come over and tell me what he knows. He introduced himself as “John,” an older man in his seventies (like me), I would guess. He did not know the nature of the problem, except that it would likely take a while if a solution is even possible. I asked if he intended to “wait it out” as the scenario played itself out well into the second hour. His response: “Yes, I’ll wait. For me, it’s now or never.”

Linda and I would wait as well, harboring much the same feelings expressed by John. By the third hour, the pilot (and apparently chief mechanic for the day) came over to us and explained there was a problem with the indicated fuel pressure to the engine. They were not sure whether the problem was with the fuel pump and its system or with the dashboard gauge-indicator, but they were working to determine the exact cause. During that brief conversation, I was very impressed with this pilot and his demeanor, but, given the circumstances, my hopes for flying in that warbird on Memorial Day, 2018, sunk to a new low at that moment. “What are the odds that this handful of folks and the pilot would be able to fix this crippled bird anytime soon?” I thought to myself. It seemed that a mechanic familiar with this warbird and possibly some replacement part would be mandatory for any realistic chance.

Just to satisfy my curiosity, I asked the pilot whether he travels with the Collings tour and what credentials are generally required to fly a warbird like the P-51. His response: “I live in the area and I own a Mustang!” My response: “That will work!” I am well aware that the significant brotherhood of people who own Mustangs not only fly them, but know them quite intimately from an operational/maintenance standpoint. Furthermore, many of these owners, scattered across the U.S., know each other personally and each other’s airplanes, as well. The brotherhood of Mustang owners is quite exclusive given the reality that purchasing a P-51 in flying condition carries a price tag of at least 1.2 million dollars, not to mention the expense required to house and maintain a warbird like that in top condition! The fact that this pilot owned his own Mustang would explain why he, his grown son (also flying that day as an alternate), and a few others felt confident in attacking the fuel pressure problem. Fairly quickly, they had several aluminum covers removed from the nose area exposing the engine; these were carefully laid-out on the tarmac. There was even an attractive lady in nice clothing out there helping by moving ladders and passing tools up to the men at work. She later told us that she was a friend of the pilot. All the while, this proud warbird sat forlornly on the tarmac like a bird with clipped wings, unable to fly!

IMG_5917

Despite the long odds, I had this vague feeling deep inside that Linda and I should wait this out – that this might all work out…somehow! Fueling those vague hopes was the confidence conveyed by the pilot’s demeanor and the image of father, son, and lady friend working with a couple of others so diligently out there on the tarmac under a blazing sun. That tableau represented “complete dedication and commitment” as far as I was concerned.

Another hour passed, and the pilot informed us that he believed the low fuel pressure indication was due to a faulty gauge, not a fuel system problem. He went on to add that they were trying to find a replacement gauge! Although my immediate thought could have been, “The local P-51 parts store is not open on Memorial Day,” my gut-feel told me to wait and see: keep the faith. Linda and I decided to pass more of our waiting time by having a Coke and a hot-dog (grilled by the local Knights of Columbus – another very nice touch at Livermore). We ventured over to a picnic table situated away from the airplanes and the tarmac, ate our “lunch” and passed some time talking with some folks.

It was now about 2:45 pm and our time was running short. We were scheduled to bring dinner to our daughter, son-in-law, and grandsons in time to see the tip-off of a key NBA playoff game involving the Golden State Warriors (who ultimately won the title). The problem: the nice dinner prepared by Linda was at home in the refrigerator; we would have to run home, pick up the dinner, and retrace our steps back north to my daughter’s home in San Mateo. Another hour at Livermore and that would not be possible, time-wise.

As the time approached 3:00, I decided now is the time to go over to the flight desk and just cancel the flight reservation which was beginning to look futile, anyway. Besides, there was John, the 10:00 passenger who was in line before me with a one-hour flight scheduled and equally determined, so it seemed, to “wait it out.” As we turned the corner and approached the flight desk, I heard a voice exclaim, “There he is!” Our P-51 pilot was standing there with a cardboard box in his hand. “We’ve got the gauge,” he said. When I inquired about the 10:00 passenger, they replied, “You are up-next! Apparently, John had given up earlier and left after canceling. “How long will it take to put in the gauge?” I asked. “About fifteen minutes,” was the reply. Without hesitation, my response was, “Well, let’s go then!”

The reality was more like one-half hour before being informed that the gauge was installed and the problem was, indeed, verified to be a faulty fuel pressure gauge. All looked good to go with the replacement! I gave Linda a hug and a kiss, ducked inside the roped security perimeter and clambered up the wing and into the cockpit. Once both legs are in the cockpit, one settles one’s behind on a parachute pack which doubles as the seat pad between you and the harsh steel “chair” bolted to the airframe. You are then helped with fastening the leg and shoulder straps on the chute prior to strapping into the military-strength harness restraint which affixes you to the seat and airframe. In case of emergency, the red canopy release lever on the lower right side is identified and exiting the plane is explained. To bail-out, you are instructed to unfasten the restraint harness straps (not those of the parachute!), release the canopy, and dive, head down, toward the back of the wing. Last and not least, one must pull the steel rip-cord handle, prominent, there, on your chest in order to deploy the ‘chute!

IMG_2378

I thought to myself, “Unlike what so often happens with commercial aviation passengers, anyone with an attention-span problem during this ‘safety briefing’ really has no business going up in a warbird.”

At this point, I need to comment on the pilot and his son. It was the son who would be taking me up in Toulouse Nuts. I believe the dad’s name is Steve, and his son is Nicholas, or “Nick.” I asked the dad’s name earlier, and I believe he told me, “Steve.” I regret that, in the midst of such excitement and activity, I cannot be more confident of names, here. I will go with my best recollection from here on in the story!

An intercom headset is handed you with instructions for communicating with the pilot, and the big moment arrives. Nick, the son, volunteered to take me up so that his dad could relax and cool down after his strenuous efforts to get the P-51 flying again. His dad said to me, “He’ll take you up: he’s better than me.”

IMG_2408

Nick went through his check-list and finally looked to verify all was clear of the propeller. The big four-bladed prop slowly turned, once, twice, and then three times before the big Merlin engine came to life, coughing and belching smoke a bit as the whole canopy shook. That was a magical moment for me, because I fully understand the legendary mystique between this iconic airplane and the Rolls-Royce/Packard Merlin V-12 inline engine which enabled this airframe to reach its full wartime potential as a deadly fighter plane. People who really know say there is nothing like the sound of that engine, whether on the ground or in the air.

As the engine of Toulouse Nuts settled into what should be a steady, raspy purr, I could detect that something was not right. The engine seemed to run slightly unevenly even to my untrained ears. Soon, Nick cut the ignition and the prop came to a stop. There was a brief comment exchanged with his dad, Steve, and others standing off to the side. Then a restart with essentially the same results. Once again, Nick killed the ignition. At this point, I really began to worry, thinking that, perhaps, there was something wrong with the fuel pump or the fuel system. I reckoned it would be a devastating disappointment should this warbird be grounded today after all my efforts. Even worse, of course, would be any engine malfunction once off the ground.

I mentioned my concern to Nick over the intercom. He told me his dad felt that the only issue is air in the fuel line stemming from the gauge replacement. I have seen this effect often in my home plumbing after turning off the water for a while and turning it back on. The water will spurt and splash from open faucets as captured air is gradually bled from the system. Nick and his dad felt confident that running up the engine for a few minutes on the tarmac should clear the fuel system of trapped air. As we sat there with engine running, I could readily discern the rough spots soon smooth out and disappear as the big Merlin began to purr, accompanied by the characteristic raspy crackle.

IMG_2410

 

IMG_2407

Heading out for the taxi-way

A thumbs-up between Nick and Steve and we were off onto the taxiway, heading for the runway and the hard-earned realization of my fondest wish. Within a minute or two we were poised at the end of the runway as Nick revved up the engine. I liked everything I heard, and so did Nick. At that, the brakes came off and Toulouse Nuts “took off” down the runway, literally and figuratively. The insistent pull of that big four-bladed propeller was impressive. Quickly, the tail lifted, then there was a slight lift-off sensation followed by a momentary hesitation in momentum (likely the landing gear retracting) followed immediately by a steep climb and sharp bank to the right, reminiscent of a roller coaster ride. It was as if Toulouse Nuts were telling me, “I am going to show you what I can do – right off the bat!” Impressive it was, indeed. Now we are heading parallel to the runway, high and off to the side, high-tailing it back past our starting point on the runway, then settling back down while banking hard right before lining up and executing a high-speed, low altitude pass directly over the runway for the benefit of the crowd (and me) before heading sharply up into that cobalt-blue sky and my thrill-of-a-lifetime – the opportunity to fly a P-51D warbird.

IMG_6908

A low-pass over the runway!

IMG_2432

Nick and me, post-flight!

My half-hour in Toulouse Nuts was worth the ticket-to-ride and all the considerable effort it took on my part to make it happen. After landing and taxiing back to the tarmac, I realized how lucky I had been. I offered my heartfelt thanks to Nick and his dad Steve for the ride and the experience, yes. I also made clear my tremendous gratitude for “saving the day” through their determined efforts not only to diagnose and fix the faulty fuel pressure gauge, but also to somehow come up with the appropriate replacement part, seemingly out of thin air – a miracle! After all, the P-51 stores are all closed on Memorial Day! As Steve walked off toward the airplane with the replacement gauge in-hand, I questioned out loud at the flight desk just how Steve found a replacement gauge under such unlikely circumstances. The girl at the flight desk remarked of Steve, “He knows a lot of people.” Apparently, he was able to telephone a fellow Mustang owner in the area who thought he had a spare fuel pressure gauge in his parts inventory. Somehow, it was located and delivered to the field just in the nick of time to salvage my dream. Indeed, the owner of a beautiful, polished aluminum P-51 had flown his airplane earlier in the day. Could that be the same fellow?

In closing, my wife, Linda, related afterward how worried she became when it was clear that the big Merlin engine was not running properly at the very beginning of the start-up sequence. Why was Nick stopping and restarting the engine accompanied by consultations with his dad, Steve? It so happened that Linda was standing next to the aforementioned lady friend of Steve’s as they watched the proceedings. She leaned over to Linda and said, “Don’t worry, he’s in good hands!” And, indeed I was.

IMG_2472

“Toulouse Nuts” : Flying the Collings Foundation P-51 Mustang

To celebrate Memorial Day last Monday, I was fortunate enough to fly an iconic World War II warbird, the P-51D Mustang owned by the Collings Foundation. The Foundation’s nation-wide Wings of Freedom tour and its airplanes had landed at Livermore Municipal Airport, in California, for a three-day stay before moving on.


Photo: Collings Foundation

The experience was not only unforgettable, but very meaningful for me. As a student of aviation history, particularly in the World War II time-frame, going up in a P-51 was something I always wanted to do: more accurately, something I had to do!
What finally moved me to act was a quote by the author Mark Twain which I recently heard and (loosely) paraphrase here: You will regret most the things in life you did not do, not the things you did.

Many are the accounts of young farm boys in middle America scrounging a quarter and going up for the first time in the rickety biplanes of traveling “barnstormers” back in the mid-nineteen-thirties. For many of those boys, that experience led ultimately to flight training in the Army Air Force during the prelude to war. This adventure of mine felt somewhat like my own, personal, modern-day version of the barnstormer ride, but more costly and with no future flight training likely!

That’s me (bluejeans) with the father of my young pilot (he also flies)

The P-51 Mustang was the greatest fighter plane in World War II, bar-none. For that, and for so many other reasons, it is the one airplane I wanted to fly and experience. It is often claimed that the P-51 won the war for us. Most certainly, without its introduction to combat in 1943, many more B-17 and B-24 bomber crews would have lost their lives to enemy fighters which flew up to intercept the “heavies” on their bomb runs over hostile territory. The P-51 was the first fighter with the fuel-range capable of escorting our bombers all the way to their targets in Germany and back to their bases in England and Italy.

P-51s also proved their air superiority over the best the Germans had to offer. When enemy fighters came up to attack our bombers, the P-51s excelled in the oft-times, close-quarter aerial dogfights with their German Me 109 and Focke-Wulf 190 counterparts. The Mustang quickly won the hearts and gratitude of the brave men who flew her and survived the war along with their indelible memories of combat. As for the bomber crews who were such vulnerable targets, they universally referred to the P-51 escorts as their “little friends.”

Heading out to the taxi-way prior to take-off

Toulouse Nuts is a rare variant of the Mustang which features not merely a seat behind the pilot, but a second full set of instrumentation and controls like the pilot’s. For a good portion of my half-hour flight, I was in control of the airplane from my rear seat vantage point. For the rest of the flight, my young pilot performed some textbook aerobatics per my request: wingovers, aileron rolls, etc. He began by pointing the nose of the airplane up a bit and then partially rolling the airplane into a dive while 90 degrees to the horizon. After a few warm-ups (for my benefit), we nosed up, “came over the top” while rolling into a fully inverted flying position while diving and leveling out. That uneasy feeling one gets when a Southwest Airlines 737 banks into a steep turn with “wing way down” is but prelude to the feeling of doing wingovers in a P-51! I now have some inkling of what combat maneuvers in a life and death dogfight with a German Me 109 must have felt like to our pilots.

Steep climb and sharp bank at take-off (runway in the background)

I have read many memoirs of World War II aces who survived, thanks to luck and skill, to tell their stories. In recent years, much of my time and library acquisitions have been devoted to learning more about the histories of the men and machines who defeated Hitler’s Luftwaffe. As I mentioned in an earlier blog post, I cannot conceive of more daring and dangerous, yet adventurous endeavors than those experienced by the bomber and fighter crews of World War II. A quote from one of the best, Clarence “Bud” Anderson, a triple Mustang ace (16.25 air victories) who flew 116 combat missions out of England, is embedded in my consciousness:

Staying alive was no simple thing in the skies over Europe in the spring of 1944. A lot of men couldn’t. It was a bad thing to dwell on if you were a fighter pilot, and so we told ourselves we were dead men and lived for the moment with no thought of the future at all. It wasn’t too difficult. Lots of us had no future and everyone knew it.

I wanted to experience, as best I could, what it must have felt like to ride out to the flight-line in a far-away place on a cold, early dawn, to greet your crew-chief who got up even earlier to prepare your plane, and then to clamber into the cockpit for yet another mission over Germany. Your crew chief helps you strap-in and briefs you on the status of your airplane. You look at him and he looks at you, briefly, each realizing that you might not come back from today’s mission. Then you close the canopy to form an eerie silence, and your crew-chief slides off the wing to the ground – perhaps the last human you will see…at least for several hours. At your touch of the starter, the big four-bladed propeller slowly turns, and turns some more, and turns some more, and finally the powerful, twelve-cylinder Rolls-Royce/Packard Merlin engine coughs and belches its way to life, shaking the cockpit in the process. In a matter of seconds, the big Merlin engine settles into a smooth, steady cadence and you are set to face the great unknowns that await all pilots on such missions.

To capture some essence of that scenario in a real P-51 Mustang is what drove me to do what I did last Monday. What better way to pay tribute to the memory of our flyers than to take to the skies over Livermore in a vintage airplane on an absolutely gorgeous, cloud-free day like Monday, May 28, 2018. It was everything I had hoped it would be, and more. I will never forget the experience.

I was supposed to fly at 11:00 am on Monday. I did not get airborne until 3:00 that afternoon. A problem with the fuel pressure gauge surfaced on the flight before mine. As Linda and I arrived at the field, I saw the airplane head off to the taxi-way for the 10:00 flight scheduled before mine. In less than two minutes, my heart fell as I saw the airplane taxi back to its parking position on the apron. I knew there must be some problem. Soon, pilot and passenger were out of the plane and the engine covers were off the nose of the airplane. The pilot and several others were all over the front portion of the plane. The previous flyer, an older fellow like me named John, stood around for at least three hours as did Linda and I. He indicated he would wait it out because, for him, the experience was “now or never.” By the time the crew had the airplane ready to go after heroic efforts on their part, John had given up, cancelled at the desk, and gone. The flight crew told me, “You are next-up,” to which I retorted, “Let’s go, then!” The fellow who flew after me was also older – at least my age. I sense that there are many older guys like me who feel the significance surrounding this airplane and its historic role while confronting the approaching decision point for themselves: to go do it or not.

I had written an earlier post on the Collings Foundation and their older P-51C, Betty Jane. She is currently undergoing a ground-up restoration/overhaul. The tour introduction of their newly restored P-51D Toulouse Nuts occurred in 2016. Technically, she is known as a TF-51D, being a rare, two seat, dual-control airplane. “T” for trainer and “F” for fighter, I believe, is the way it works. The “P” in P-51 is an outmoded reference for “pursuit,” nomenclature which was commonly used early in World War II and prior. Toulouse Nuts represents the “D” evolution of the airplane’s design, its ultimate configuration during the war. For pilots and would-be flyers/passengers like me, the bubble canopy of the “D” offers a superior visual experience compared to the birdcage structure of the earlier “C” models like Betty Jane.

An amazing, unforgettable experience!

Toulouse Nuts is one of three original TF-51Ds remaining in the world. She is painted in her original markings of the West Virginia Air Guard, 167th fighter squadron.

B-24 Liberator Bomber, Witchcraft – the last one flying of over 18,000 built!

The Rolls-Royce Merlin Aircraft Engine: P-51 Mustang Power Defeated the Luftwaffe

The North American P-51 Mustang was the best fighter airplane in World War II. It became available to the U.S. fighter command as a potent package in enough time to tilt the air war with Germany in the Allies’ favor. I wrote about the justly-famous P-51 in a previous post (July 6, 2016). That post can be found in my home page archives. In it, I referred to the Merlin V-12 power plant which, when finally coupled with the great airframe platform from California-based North American Aviation, turned a decent performer into an iconic fighting airplane.

While “Rolls-Royce” on this engine clearly denotes an English heritage, the same can, surprisingly, be said of the P-51 itself. Designed and built by North American Aviation in Los Angeles, California, the airplane’s genesis actually emanated from England. The P-51 began as a specification provided to North American by the British Purchasing Commission early in 1940. Incredibly, the first prototype appeared on September 9, 1940, a mere 102 days after the contract with North American was signed. The NA-73X airframe first flew on October 26, 1940.

Originally designed for the British Allison V-1710 engine, the Mustang prototypes demonstrated disappointing performance at altitudes above 15,000 feet. The B-17 and B-24 bombers of the Eighth U.S. Air Force typically cruised over 20,000 feet on their bombing missions into Germany from bases in England. During the Battle of Britain in mid-1940, the German Luftwaffe was already flying their front-line fighter, the Messerschmidt 109. The Me 109 and the Focke-Wulf 190 would both prove to be a significant threat to Allied bombers in the skies over Germany throughout the war. Despite Britain’s just-in-time introduction in 1940 of their own top-line fighter, the Supermarine Spitfire, the Me 109 still had advantages over it and the older Hawker Hurricane by way of its firepower and its fuel-injected engine. The Messerschmidt had, in addition to 50 caliber machine guns, a 20 mm cannon firing through the spinner of its propeller. That deadly weapon coupled with the much longer firing-burst capability of its guns gave the Me 109 a significant advantage. The Hurricane and the Spitfire had carbureted engines with a typical float-chamber in the fuel system which caused the airplanes to hesitate when abruptly put into an evasive dive maneuver. The fuel-injected 109s had no such problem and could easily overtake their prey on the way down.

The major problem faced by the U.S. Eighth Air Force bomber command by 1942 was the vulnerability of its B-17 and B-24 heavy bombers after leaving their bases in the English countryside and entering German air space. The B-17 “Flying Fortress” was aptly named given the eventual array of thirteen 50 caliber machine guns in eight strategic locations around the aircraft. Early in the war, it was believed that bomber formations of aircraft with that degree of armament would be quite capable of protecting themselves from German fighter interceptors who came up to meet them over German territory. That assumption quickly proved very erroneous as losses mounted.

The solution? Provide fighter escorts for the bombers. Prior to the introduction of the P-51 in late 1943, that assignment was handed to fighter wings typically flying the Republic Aviation P-47 Thunderbolt. The P-47 had two major problems. To begin with, the airplane had a short fuel-limited range which forced it to turn back and abandon its escort duties soon after entering German airspace. That, of course, was precisely when the bomber formations would most likely encounter German fighter resistance. Besides, the chunky P-47 suffered severe disadvantages in aerial combat with the more agile and faster Me 109 and Focke-Wulf 190 German fighters. Bomber losses were severe from the combination of aerial flak guns and German interceptors, culminating in the disastrous bombing raid on Regensburg, Germany, where sixty bombers were lost in one day – some 600 men.

Enter the P-51 Mustang in late 1943 whose horsepower, speed, agility, and high-altitude performance provided a palpable advantage over German counterparts thanks to its supercharged Merlin engine which had replaced the original Allison V17-10 powerplant. With the airplane’s inherently large fuel capacity and an added pair of drop-tanks beneath its wings, the P-51 could go all the way to the target and back with the “heavies.” The bomber crews fondly referred to the Mustang escorts as their “little friends.”

Most of the eventual Mustang production of some 15,000 planes was powered by the Rolls-Royce Merlin built under license by the Packard Motor Car company in Detroit. The Merlin engine was also widely used in other notable wartime aircraft including England’s top fighter, the Spitfire. Nothing in the air during the war could match the powerfully effective Merlin/Mustang combination, however.

I recently watched a wartime documentary on the momentous effort to design and ramp up production of the Merlin engine in England during the early phases of WW II. This was a huge wartime effort on the part of the English who faced the possible invasion of their country and the subjugation of Europe at the hand of Hitler’s Germany. The film was totally enlightening and engrossing – so many history and social lessons to be derived from the can-do spirit of the English.

My wife and I recently saw the movie, The Darkest Hour, which portrayed Winston Churchill’s lonely desperation in 1939/1940 as the destiny of England and, indeed, all of Europe became increasingly problematic. Fact is always stranger and more dramatic than fiction, and this fine movie drives home the point. So much hung in the balance, a balance which finally tilted favorably to the Allies on the knife-edge of numerous pivotal decisions and efforts. The Merlin engine and the P-51 Mustang airframe from North American Aviation were two of those very decisive factors which ultimately doomed Hitler – especially as combined together in the final P-51 designs. In 1945, many of Germany’s major cities had been reduced to rubble by Allied bombers based in England which, thanks to the Mustangs and their intrepid pilots, could now reach their targets.

I will close by calling upon a recollection from my earlier post on the iconic P-51 Mustang when the Collings Foundation brought their Wings of Freedom touring air show to nearby Moffett Field. My two young grandsons and I stood close by on the tarmac as their P-51, Betty Jane, prepared to fly.

Firing-Up the Big Merlin-Packard Engine of Betty Jane

As my grandsons and I stood outside the roped area, a mere 50 feet from Betty Jane, the pilot fired up the big Packard-built twelve-cylinder engine sporting a large, four-bladed propeller. The pilot yelled “clear” from the cockpit, the big prop started to turn, and the engine came to life after belching smoke and the usual series of backfires. The engine sounded a throaty roar as Betty Jane moved out toward the taxi-way. My grandsons held their ears…I did not and drank it all in. In my mind’s eye, I could imagine the emotions of a pilot on the flight line at Leiston, England, bringing that big engine to life en-route to yet another bomber escort mission over Germany in 1944/45. Despite the huge war effort and all the backing provided by the allies for combat flight operations, out there on the flight line, as the engine coughed, sputtered, roared to life, and the canopy closed, it was one man in one machine – very far from home. The pilot was about to face the uncertainties of weather, navigation, and his enemy counterparts who would be out there, somewhere, waiting for him and the opportunity to shoot him and his machine out of the sky.

For me, it is difficult to conjure up a more daring and exhilarating human experience than that encountered by those flyers in World War II. For them at the time, there surely seemed nothing “romantic” about the deadly task they faced – only a sense of high adventure and “what the hell, I hope I come back from this one!” I have read the late-life accounts of some who flew Mustangs against the German Luftwaffe and lived to tell about it. Despite some surely ugly recollections of killing and death which stubbornly remain, time dulls many of the sharp edges – as it always does – for these men. These flyers are revered by the public for their courage, daring, and skill during wartime, and that is appropriate. Despite old age and the challenges of settling down after flying, these warriors possess indelible and precious memories of that time in their young lives when they and their machines defied the great odds stacked against them. Those who flew the P-51 Mustang, to a man, relate their admiration of and gratitude to the airplane that saw them through.

J. Robert Oppenheimer and the Atomic Bomb: Triumph and Tragedy

J. Robert Oppenheimer: Along with Albert Einstein, one of the most interesting and important figures in modern history. Although very different in world-view and personality, the names of these two men are both linked to arguably the most significant human endeavor and resultant “success” in recorded history. The effort in question was the monumental task of the United States government to harness the energy of the atom in a new and devastating weapon of war, the atomic bomb. The super-secret Manhattan Project was a crash program formally authorized by president Franklin Roosevelt on Dec. 6, 1941. The program’s goal: In a time-frame of less than four years and against all odds, to capitalize on very recent scientific discoveries and rapidly develop an operational military weapon of staggering destructive power.

Albert Einstein and the Atomic Bomb

Albert Einstein, whose scientific resume ranks just behind that of Isaac Newton, had virtually no role in this weapons program save for two notable exceptions. First and foremost, it was Einstein’s follow-up paper to his milestone theory of special relativity in 1905 which showed that, contrary to long-standing belief, mass and energy are one and the same, theoretically convertible from one to another. That relationship is expressed by the most famous equation in science, e = mc2, where e is the energy inherent in mass, m is the mass in question, and c is the constant speed of light. One careful look at this relationship reveals its profoundness. Since the speed of light is a very large number (300 million meters per second), a tiny bit of mass (material) converted into its energy equivalent yields a phenomenal amount of energy. Note that Einstein had proposed a theoretical, nonetheless real, relationship in his equation. The big question: Would it ever be possible to produce that predicted yield of energy in practice? In 1938, two chemists in Hitler’s Germany, Hahn and Strassman, demonstrated nuclear fission in the laboratory, on a tiny scale. That news spread quickly throughout the world physics community – like ripples on a giant pond. It now appeared feasible to harness the nuclear power inherent in the atom as expressed by Einstein’s equation.

In August of 1939, alarmed by the recent news from Germany, Hungarian physicist Leo Szilard asked his colleague, Albert Einstein, to affix his signature to a letter addressed to President Roosevelt. The letter warned of recent German scientific advances and Germany’s sudden interest in uranium deposits in the Belgian Congo of Africa. Einstein, a German Jew who fled his homeland in 1932 for fear of Hitler’s growing influence, dutifully but reluctantly signed his name to the letter. Einstein’s imprimatur on the letter was Szilard’s best hope of affixing Roosevelt’s attention on the growing feasibility of an atomic bomb. Einstein and many other European scientists were, from personal experience, justifiably terrified at the prospect of Hitler’s Germany acquiring such a weapon, and the Germans had first-class scientific talent available to tackle such a challenge.

Einstein, one of history’s great pacifists, was thus ironically tied to the atomic bomb program, but his involvement went no further. Einstein never worked on the project and, after the war when Germany was shown to have made no real progress toward a weapon, he stated: “Had I known that the Germans would not succeed in producing an atomic bomb, I never would have lifted a finger.”

Stranger Than Fiction: The High Desert of Los Alamos, New Mexico

By early 1943, peculiar “invitations” from Washington were being received by many of this country’s finest scientific/engineering minds. A significant number of these ranked among the world’s top physicists including Nobel Prize winners who had emigrated from Europe. These shadowy “requests” from the government called for the best and the brightest to head (with their families in many cases) to the wide-open high desert country of New Mexico. Upon arrival, they would be further informed (to a limited extent) of the very important, secret work to be undertaken there. I have always believed that fact is stranger than fiction, and much more interesting and applicable. What transpired at Los Alamos over the next three years under the direction of J. Robert Oppenheimer and Army General Leslie Groves is scarcely believable, and yet it truly happened, and it has changed our lives unalterably.

One of my favorite narratives from Jon Else’s wonderful documentary film on the atomic bomb, The Day After Trinity, beautifully describes the ludicrous situation: “Oppenheimer had brought scientists and their families fresh from distinguished campuses all over the country – ivied halls, soaring campaniles, vaulted chapels. Los Alamos was a boom town – hastily constructed wooden buildings, dirt streets, coal stoves, and [at one point] only five bathtubs / There were no sidewalks. The streets were all dirt. The water situation was always bad / It was not at all unusual to open your faucet and have worms come out.” Los Alamos was like a California gold-rush boom town, constructed in a jiffy with the greatest assemblage of world-class scientific talent that will ever be gathered in one location. General Groves once irreverently quipped (with humor and perhaps some frustration) that Los Alamos had the greatest assemblage of “crack-pots” the world has ever known.

As improbable as the situation and the task at hand appeared – even given an open check-book from Roosevelt and Congress – Groves and Oppenheimer made it happen. I cannot think of any human endeavor in history so complex, so unlikely…and so “successful.” The triumph of NASA in space comes in a close second, but even realizing JFK’s promise of a man on the moon by 1969 cannot top the extraordinary scenario which unfolded at Los Alamos, New Mexico – all largely shielded from view.

The initial (and only) test of the atomic bomb took place on July 16, 1945, on the wide expanse of the New Mexico desert near Los Alamos. The test was code-named “Trinity.” The accompanying picture shows Oppenheimer and General Groves at ground zero of the blast, the site of the high tower from which the bomb was detonated. Evidence of desert sand fused into glass by the intense heat abounds. The test was a complete technical success – vindication for the huge government outlay and the dedication on the part of so many who put their lives on hold by moving to the high desert of New Mexico and literally “willing” their work to success for fear of the Germans. By July of 1945, however, Germany was vanquished without having made any real progress toward an atomic bomb.

The World Would Never Be the Same

That first nuclear detonation signaled a necessary reset for much of human thought and behavior. Many events quickly followed that demonstrated the power of that statement. Of immediate impact was the abrupt termination of World War II, brought about by two atomic bombs successfully dropped on Japan just weeks after the first and only test of the device (Hiroshima, August 6, 1945; Nagasaki, August 9, 1945). The resulting destruction of these two cities accomplished what many thousands of invading U.S. troops might have taken months to complete – with terrible losses. The horrific effect of these two bombs on the people of Japan has been well documented since 1945. Many, including a significant number of those who worked on the development of these weapons protested that such weapons should never be used again. Once the initial flush of “success” passed, the man most responsible for converting scientific theory into a practical weapon of mass destruction quickly realized that the “nuclear genie” was irretrievably out of the bottle, never to be predictably and reliably restrained. Indeed, Russia shocked the world by detonating its first atomic bomb in 1949. The inevitable arms race that Oppenheimer foresaw had already begun… the day after Trinity.

The Matter of J. Robert Oppenheimer, the Man

J. Robert Oppenheimer had been under tremendous pressure as technical leader of the super-secret Manhattan project since being appointed by the military man in charge of the entire project, Army general Leslie Groves. Groves was a military man through and through, accustomed to the disciplined hierarchy of the service, yet he hand-picked as technical lead for the whole program the brilliant physicist and mercurial liberal intellectual, J. Robert Oppenheimer – the most unlikely of candidates. Oppenheimer’s communist wife and brother prompted the FBI to vigorously protest the choice. Groves got his way, however.

Groves’ choice of J. Robert Oppenheimer for the challenging and consuming task of technical leader on the project proved to be a stroke of genius on his part; virtually everyone who worked on the Manhattan Project agreed there was no-one but Oppenheimer who could have made it happen as it did.

“Oppie,” as he was known and referred to by many on the Manhattan Project, directed the efforts of hundreds of the finest scientific and engineering minds on the planet. Foreign-born Nobel prize winners in physics were very much in evidence at Los Alamos. Despite the formidable scientific credentials of such luminaries as Hans Bethe, I.I. Rabi, Edward Teller, Enrico Fermi, and Freeman Dyson, Oppenheimer proved to be their intellectual equal. Oppenheimer either already knew and understood the nuclear physics, the chemistry, and the metallurgy involved at Los Alamos, or he very quickly learned it from the others. His intellect was lightning-quick and very deep. His interests extended well beyond physics as evidenced by his great interest in French metaphysical poetry and his multi-lingual capability. Almost more incredible than his technical grasp of all the work underway at Los Alamos was his unanticipated ability to manage all aspects of this, the most daring, ambitious, and important scientific/engineering endeavor ever undertaken. People who knew well his scientific brilliance from earlier years were amazed at the overnight evolution of “Oppie, the brilliant physicist and academic” into “Oppie, the effective, efficient manager” and co-leader of the project with General Groves.

Indelibly imprinted upon my mind is the interview scene with famous Nobel Laureate Hans Bethe conducted by Jon Else, producer of The Day After Trinity. Bethe was Oppie’s pick to be group leader for all physics on the project. The following comments of Bethe, himself a giant in theoretical physics, cast a penetrating light on the intellectual brilliance of J. Robert Oppenheimer and his successful role in this, the most daring and difficult scientific project ever attempted:

– “He was a tremendous intellect. I don’t believe I have known another person who was quite so quick in comprehending both scientific and general knowledge.”
– “He knew and understood everything that went on in the laboratory, whether it was chemistry, theoretical physics, or machine-shop. He could keep it all in his head and coordinate it. It was clear also at Los Alamos, that he was intellectually superior to us.”

The work was long, hard, and often late into the night at Los Alamos for its two thousand residents, but there was a social life at Los Alamos, and, according to reports, Robert Oppenheimer was invariably the center of attention. He could and often did lead discussions given his wide-ranging knowledge …on most everything! Dorothy McKibben (seated on Oppenheimer’s right in the following picture) was the “Gatekeeper of Los Alamos” according to all who (necessarily) passed through her tiny Manhattan Project Office at 109 East Palace Avenue, Santa Fe, New Mexico. There, they checked-in and collected the credentials and maps required to reach the highly secured desert site of Los Alamos. Ms. McKibben was affluent in her praise of Oppenheimer: “If you were in a large hall, and you saw several groups of people, the largest groups would be hovering around Oppenheimer. He was great at a party, and women simply loved him and still do.”

The Nuclear Weapons Advantage Proves to be Short-Lived

What was believed in 1945 to represent a long term, decided military advantage for the United States turned out to be an illusion, much as Oppenheimer likely suspected. With the help of spies Klaus Fuchs at Los Alamos, Julius Rosenberg, and others, Russia detonated their first atomic bomb only four years later.

Oppenheimer knew better, because he understood the physics involved and that, once demonstrated, nuclear weapons would rapidly pose a problem for the world community. When interviewed years later at Princeton where he had been head of the Institute for Advanced Studies (and Albert Einstein’s “boss”) he is shown in The Day After Trinity responding to the question, “[Can you tell us] what your thoughts are about the proposal of Senator Robert Kennedy that President Johnson initiate talks with the view to halt the spread of nuclear weapons?” Oppenheimer replied rather impatiently, “It’s twenty years too late. It should have been done the day after Trinity.”

J. Robert Oppenheimer fully appreciated, on July 16, 1945, the dangers inherent in the nuclear genie let loose from the bottle. His fears were well founded. Within a few years after Los Alamos, talk surfaced of a new, more powerful bomb based on nuclear fusion rather than fission, nevertheless still in accordance with e = mc2. This became popularly known as the “hydrogen bomb.” Physicist Edward Teller now stepped forward to promote its development in opposition to Oppenheimer’s stated wish to curtail the further use and development of nuclear weapons.

Arguments raged over the “Super” bomb as it was designated, and Teller prevailed. The first device was detonated by the U.S. in 1952. A complex and toxic cocktail of Oppenheimer’s reticence toward development of the Super combined with the past communist leanings of his wife, brother Frank, and other friends led to the Atomic Energy Commission, under President Eisenhower, revoking Oppenheimer’s security clearance in 1954. That action ended any opportunity for Oppenheimer to even continue advising Washington on nuclear weapons policy. The Oppenheimer file was thick, and the ultimate security hearings were dramatic and difficult for all involved. As for the effect on J. Robert Oppenheimer, we have the observations of Hans Bethe and I.I. Rabi, both participants at Los Alamos and Nobel prize winners in physics:

– I.I. Rabi: “I think to a certain extent it actually almost killed him, spiritually, yes. It achieved just what his opponents wanted to achieve. It destroyed him.”
– Hans Bethe: “He had very much the feeling that he was giving the best to the United States in the years during the war and after the war. In my opinion, he did. But others did not agree. And in 1954, he was hauled before a tribunal and accused of being a security risk – a risk to the United States. A risk to betray secrets.”

Later, in 1964, attitudes softened and Edward Teller nominated Oppenheimer for the prestigious Enrico Fermi award which was presented by President Johnson. As I.I. Rabi observed, however, the preceding events had, for all intents and purposes, already destroyed him. Oppenheimer was a conflicted man with a brilliant wide-ranging intellect. While one might readily agree with Hans Bethe’s assessment that Oppenheimer felt he was “giving the best to the United States in the years during and after the war,” there is perhaps more to the story than a significantly patriotic motivation. Oppenheimer was a supremely competent and confident individual whose impatient nature was tinged with a palpable arrogance. These characteristics often worked to his disadvantage with adversaries and co-workers.
Then there was the suggestion that, in addition to his patriotic motives, Oppenheimer was seized by “the glitter and the power of nuclear weapons” and the unprecedented opportunity to do physics on a grand scale at Los Alamos, and those were also major motivations. Other colleagues on the project later confessed to feeling the glitter and power of nuclear weapons, themselves. A brilliant man of many contradictions was Oppenheimer – that much is certain. Also certain is the likelihood that the man was haunted afterward by misgivings concerning his pivotal role, whatever his motivations, in letting loose the nuclear genie. The sadness in his eyes late in life practically confirms the suspicion. That is the tragedy of J. Robert Oppenheimer. Triumph has a way of extracting its penalty, its pound of flesh. I can think of no better example than Oppenheimer.

Immediately upon hearing of the bombing of Hiroshima, Hans Bethe recalled, “The first reaction which we had was one of fulfillment. Now it has been done. Now the work which we have been engaged in has contributed to the war. The second reaction, of course, was one of shock and horror. What have we done? What have we done? And the third reaction: It shouldn’t be done again.”

Nuclear Weapons: The Current State and Future Outlook

In the headlines of today’s news broadcasts as I write this is the looming threat of North Korean nuclear-tipped intercontinental ballistic missiles. The North Koreans have developed and tested nuclear warheads and are currently test-launching long-range missiles which could reach the U.S. mainland, as far east as Chicago. Likewise, Iran is close to having both nuclear weapons and targetable intermediate-range missiles. Nuclear proliferation is alive and well on this earth.

To illustrate the present situation, consider one staple of the U.S. nuclear arsenal -the one megaton thermonuclear, or hydrogen, bomb with the explosive equivalent of just over one million tons of TNT. That explosive energy is fifty times that of the plutonium fission bomb which destroyed the city of Nagasaki, Japan (twenty-two thousand tons of TNT). The number of such powerful weapons in today’s U.S. and Russian nuclear stockpiles is truly staggering, especially when one considers that a single one megaton weapon could essentially flatten and incinerate the core of Manhattan, New York. Such a threat is no longer limited to a device dropped from an aircraft. Nuclear-tipped ICBMs present an even more ominous threat.

The surprise success of the first Russian earth-orbiting satellite, “Sputnik,” in 1957 had far more significance than the loss of prestige in space for the United States. Accordingly, the second monumental and historic U.S. government program – on the very heels of the Manhattan Project – was heralded by the creation of NASA in 1958 and its role in the race to the moon. President John F. Kennedy issued his audacious challenge in 1963 for NASA to regain lost technical ground in rocketry by being first to put a man on the moon …in the decade of the sixties – in less than seven years! Many in the technical community thought the challenge was simply “nuts” given the state of U.S. rocket technology in 1963. As with the then very-recent, incredibly difficult and urgent program to build an atomic bomb, the nation once again accomplished the near-impossible by landing Armstrong and Aldrin on the moon on July 20, 1969 – well ahead of the Russians. And it was important that we surpassed Russia in rocket technology, for our ICBMs, which are the key delivery vehicle for nuclear weapons and thus crucial to most of the U.S. strategic defense, were born of this country’s efforts in space.

“Fat Man,” the bomb used on Nagasaki – 22 kilotons of TNT

Photo: Paul Shambroom

B83 1 megaton hydrogen bombs…compact and deadly

The above picture of a man casually sweeping the warehouse floor in front of nearly ten megatons of explosive, destructive power, enough to level the ten largest cities in America gives one pause to reflect. On our visit to Los Alamos in 2003, I recall the uneasy emotions I felt merely standing next to a dummy casing of this bomb in the visitor’s center and reflecting on the awesome power of the “live” device. Minus their huge development and high “delivery” costs, such bombs are, in fact, very “cheap” weapons from a military point of view.

One conclusion: Unlike the man with the broom in the above picture, we must never casually accept the presence of these weapons in our midst. One mistake, one miscalculation, and nuclear Armageddon may be upon us. The collective angels of man’s better nature had better soon decide on a way to render such weapons unnecessary on this planet. Albert Einstein expressed the situation elegantly and succinctly:

“The unleashing of [the] power of the atom has changed everything but our modes of thinking and thus we drift toward unparalleled catastrophes.”

Under a brilliant New Mexico sky on October 16, 1945, the residents of the Los Alamos mesa gathered for a ceremony on J. Robert Oppenheimer’s last day as director of the laboratory. The occasion: The receipt of a certificate of appreciation from the Secretary of War honoring the contributions of Oppenheimer and Los Alamos.

In his remarks, Oppenheimer stated: “It is our hope that in years to come we may look at this scroll, and all that it signifies, with pride. Today, that pride must be tempered with a profound concern. If atomic bombs are to be added as new weapons to the arsenals of a warring world, or to the arsenals of nations preparing for war, then the time will come when mankind will curse the names of Los Alamos and Hiroshima. The peoples of the world must unite, or they will perish.”

In today’s world, each step along the path of nuclear proliferation brings humanity ever closer to the ultimate fear shared by J. Robert Oppenheimer and Albert Einstein. The world had best heed their warnings.

Is Life Becoming Too Complex? The Devil Is in the Details….! Can We Keep Up?

Details matter in this life, and they demand our attention – increasingly so. It is becoming impossible to live under illusions such as, “Details are confined mainly to the realm of specialists, like the computer programmer and the watchmaker.” The need for “attention to detail” on the part of everyman has never been greater.

patek-manual-movement1

I’ve been around for a while, now – over seventy-six years. Given all those years and, with the detached attitude of an impartial observer, I have reached some general conclusions regarding technology, time, and our quality of life, today.

Conclusion #1:
The opportunity for living a comfortable, meaningful, and rewarding life has never been greater – especially in this United States of America. We have so many choices today in this society, for better or for worse.

Conclusion #2:
The veracity of conclusion #1 is due to the positive influence of science and technology on our lives. Today’s information age has delivered the world, indeed, the universe (and Amazon, too) to our desktops and living rooms.

cyber-security1

It is true that computers and the internet are virtually indispensable, now.  However, the tools and the technology of the scientific/information age change continually, at an ever more rapid pace. Can we humans continue to keep pace with it all without making painful choices and sacrifices in our lives? Have computer problems ever driven you nuts? Do we have too many choices and opportunities now, thanks to the internet and stores like Walmart? How often have you shopped for something specific in the supermarket or on Amazon and been bewildered by the blizzard of choices which accost you thanks to high-tech marketing? Even choosing a hair shampoo poses a challenge for today’s shopper.

Conclusion #3:
Scientific knowledge and the rapid technological progress it spawns have become, universally, a 50/50 proposition for the human race. The reality suggests that for every positive gain in our lives brought about by our growing technology base, there is, unrelentingly, a negative factor to be overcome as well – a price to be paid. There is virtually a one-to-one correspondence at play – seemingly like an unspoken law of nature which always holds sway – much like the influence of gravitational attraction! In familiar parlance, “There is no free lunch in life: Rather, a price to paid for everything!”

The best example possible of this contention? Consider Einstein’s revelation in 1905 that mass and energy are interchangeable: e=mc2. This, the most famous equation in science, opened not only new frontiers in physics, but also the possibility of tremendous industrial power – at minimal cost. On the negative side, along with nuclear power plants, we now have nuclear weapons capable, in one day, of essentially ending life on this planet – thanks to that same simple equation. As for usable, nuclear-generated power, the potential price for such energy has been dramatically demonstrated in several notable cases around the globe over recent decades.

Need another example? How about the information technology which enables those handy credit cards which make purchasing “goodies” so quick and easy? On the negative side, how about the punishing cost of credit for account balances not promptly paid? More disturbing is the fact that such technology in the hands of internet criminals makes one’s private financial information so vulnerable, today. I found out the hard way, recently, that just changing your hacked credit card for a new one does not necessarily end your problems with unauthorized charges! The price in real money paid by society for foiling technology savvy ne-er do-wells is huge, in the billions of dollars every year.

Conclusion #4
Society, today, seems to discount the wisdom inherent in the old, familiar phrase, “The devil is in the details!” We are easily enticed by the lure of “user-friendly” computers and devices, and indeed, most are generally well-designed to be just that – considering what they can do for us. But today’s scientists and engineers fully understand the profundity of that “devil is in the details” contention as they burrow deeper and deeper into nature’s secrets. The lawyer and the business man fully understand the message conveyed given the importance of carefully reading “the fine print” embedded in today’s legal documents and agreements. How many of us take (or can even afford) the time to read all the paperwork/legalese which accompanies the purchase of a new automobile or a house! Increasingly, we seem unable/unwilling to keep up with the burgeoning demands imposed by the exponential growth of detail in our lives, and that is not a healthy trend.

I am convinced and concerned that many of us are in way over our heads when it comes to dealing with the more sophisticated aspects of today’s personal computers, and these systems are becoming increasingly necessary for families and seniors merely trying to getting by in today’s internet world. Even those of us with engineering/computer backgrounds have our hands full keeping up with the latest developments and devices: I can personally attest to that! The devil IS in the details, and the details involved in computer science are growing exponentially. Despite the frequently quoted phrase “user-friendly interface,” I can assure you that the complexity lurking just below that user-friendly, top onion-skin-layer of your computer or iPhone is very vast, indeed, and that is why life gets sticky and help-entities like the Geek Squad will never lack for stymied customers.

Make no mistake: It is not merely a question of “Can we handle the specific complexities of operating/maintaining our personal computers?” Rather, the real question is, “Can we handle all the complexities/choices which the vast capabilities of the computer/internet age have spawned?”  

Remember those “user manuals?” Given the rapid technological progress of recent decades, the degree of choice/complexity growth is easily reflected by the growing size of user manuals, those how-to instructions for operating our new autos, ovens, cooktops, washing machines, and, now, phones and computers. Note: The “manuals” for phones and computers are now so complex that printed versions cannot possibly come with these products. Ironically, there are virtually no instructions “in the box.” Rather, many hundreds of data megabytes now construct dozens of computer screens which demonstrate the devices’ intricacies on-line. These software “manuals” necessarily accommodate the bulk and the constantly changing nature of the product itself. Long gone are the old “plug it in and press this button to turn it on” product advisories. More “helpful” product options result in significantly more complexity! Also gone are the “take it in for repair” days. My grandfather ran a radio repair shop in Chicago seventy years ago. Today, it is much cheaper and infinitely more feasible to replace rather than repair anything electronic.

An appropriate phrase to describe today’s burgeoning technologies is “exponential complexity.” What does that really mean and what does it tell us about our future ability to deal with the coming “advantages” of technology which will rain down upon us? I can illustrate what I mean.

Let us suppose that over my seventy-six years, the complexity of living in our society has increased by 5% per year – a modest assumption given the rapid technological gains in recent decades. Using a very simple “exponential” math calculation, at that rate, life for me today is over 40 times more complex than it was for my parents the day I was born!

To summarize: Although many of the technological gains made over recent decades were intended to open new opportunities and to make life easier for us all, they have imposed upon us a very large burden in the form of the time, intelligence, and intellectual energy required to understand the technology and to use it both efficiently and wisely. Manual labor today is much minimized; the intellectual efforts required to cope with all the newest technology is, indeed, very significant and time-consuming. There is a price to be paid…for everything.

The major question: At what point does technology cease to help us as human beings and begin to subjugate us to the tyranny of its inherent, inevitable and necessary details? The realm in which the details live is also home to the devil.

The devil tempts. The burgeoning details and minutia in today’s society act to corrode our true happiness. We should be cautious lest we go too far up the technology curve and lose sight of life’s simpler pleasures… like reading a good book in a quiet place – cell phones off and out of reach. The noise and bustle of Manhattan can appear endlessly intoxicating to the visitor, but such an environment is no long-term substitute for the natural sounds and serenity of nature at her finest. The best approach to living is probably a disciplined and wisely proportioned concoction of both worlds.

The above recipe for true happiness involves judicious choices, especially when it comes to technology and all the wonderful opportunities it offers. Good choices can make a huge difference. That is the ultimate message of this post.

As I write this, I have recently made some personal choices: I am redoubling my efforts to gain a more solid grasp of Windows 10 and OS X on my Mac. Despite the cautionary message of this post regarding technology, I see this as an increasingly necessary (and interesting) challenge in today’s world. This is a choice I have made. I have, however, put activities like FaceBook aside and have become much more choosey about time spent on the internet.

My parting comment and a sentiment which I hope my Grandkids will continue to heed: “So many good books; so little quality time!”

Sir Humphry Davy: Pioneer Chemist and His Invention of the Coal Miner’s “Safe Lamp” at London’s Royal Institution – 1815

humphry-davy-51Among the many examples to be cited of science serving the cause of humanity, one story stands out as exemplary. That narrative profiles a young, pioneering “professional” chemist and his invention which saved the lives of thousands of coal miners while enabling the industrial revolution in nineteenth-century England. The young man was Humphry Davy, who quickly rose to become the most famous chemist/scientist in all of England and Europe by the year 1813. His personal history and the effects of his invention on the growth of “professionalism” in science are a fascinating story.

The year was 1799, and a significant event had occurred. The place: London, England. The setting: The dawning of the industrial revolution, shortly to engulf England and most of Europe. The significant event of which I speak: The chartering of a new, pioneering entity located in the fashionable Mayfair district of London. In 1800, the Royal Institution of Great Britain began operation in a large building at 21 Albemarle Street. Its pioneering mission: To further the cause of scientific research/discovery, particularly as it serves commerce and humanity.

21-albemarle-street-then

The original staff of the Royal Institution was tiny, headed by its founder, the notable scientist and bon-vivant, Benjamin Thompson, also known as Count Rumford. Quickly, by 1802, a few key members of the founding staff, including Rumford, were gone and the fledgling organization found itself in dis-array and close to closing its doors. Just one year earlier, in 1801, two staff additions had materialized, men who were destined to make their scientific marks in physics and chemistry while righting the floundering ship of the R.I. by virtue of their brilliance – Thomas Young and the object of this post, a young, relatively unknown, pioneering chemist from Penzance/Cornwall, Humphry Davy.

By the year 1800, the industrial revolution was gaining momentum in England and Europe. Science and commerce had already begun to harness the forces of nature required to drive industrial progress rapidly forward. James Watt had invented the steam engine whose motive horsepower was now bridled and serving the cause by the year 1800. The looming industrial electrical age was to dawn two decades later, spearheaded by Michael Faraday, the most illustrious staff member of the Royal Institution, ever, and one of the greatest physicists in the history of science.

In the most unlikely of scenarios at the Royal Institution, Humphry Davy interviewed and hired the very young Faraday as a lab assistant (essentially lab “gofer”) in 1813. By that time, Davy’s star had risen as the premier chemist in England and Europe; little did he know that the young Faraday, who had less than a grade-school education and who worked previously as a bookbinder, would, in twenty short years, ascend to the pinnacle of physics and chemistry and proceed to father the industrial electrical age. The brightness of Faraday’s scientific star soon eclipsed even that of Davy’s, his illustrious benefactor and supervisor.

For more on that story click on this link to my previous post on Michael Faraday: https://reasonandreflection.wordpress.com/2013/08/04/the-electrical-age-born-at-this-place-and-fathered-by-this-great-man/

Wanted: Ever More Coal from England’s Mines 
at the Expense of Thousands Lost in Mine Explosions

Within two short years of obtaining his position at the Royal Institution in 1813, young Faraday found himself working with his idol/mentor Davy on an urgent research project – a chemical examination of the properties of methane gas, or “fire damp,” as it was known by the “colliers,” or coal miners.

The need for increasing amounts of coal to fuel the burgeoning boilers and machinery of the industrial revolution had forced miners deeper and deeper underground in search of rich coal veins. Along with the coal they sought far below the surface, the miners encountered larger pockets of methane gas which, when exposed to the open flame of their miner’s lamp, resulted in a growing series of larger and more deadly mine explosions. The situation escalated to a national crisis in England and resulted in numerous appeals for help from the colliers and from national figures.

By 1815, Humphry Davy at the Royal Institution had received several petitions for help, one of which came from a Reverend Dr. Gray from Sunderland, England, who served as a spokesman/activist for the colliers of that region.

Davy and the Miner’s Safe Lamp:
Science Serving the “Cause of Humanity”

Working feverishly from August and into October, 1815, Davy and Faraday produced what was to become known as the “miner’s safe lamp,” an open flame lamp designed not to explode the pockets of methane gas found deep underground. The first announcement of Davy’s progress and success in his work came in this historic letter to the Reverend Gray dated October 30, 1815.

davy_1x

The announcement heralds one of the earliest, concrete examples of chemistry (and science) put to work to provide a better life for humanity.

Royal Institution
Albermarle St.
Oct 30

 My Dear Sir

                               As it was in consequence of your invitation that I endeavored to investigate the nature of the fire damp I owe to you the first notice of the progress of my experiments.

 My results have been successful far beyond my expectations. I shall inclose a little sketch of my views on the subject & I hope in a few days to be able to send a paper with the apparatus for the Committee.

 I trust the safe lamp will answer all the objects of the collier.

 I consider this at present as a private communication. I wish you to examine the lamps I had constructed before you give any account of my labours to the committee. I have never received so much pleasure from the results of my chemical labours, for I trust the cause of humanity will gain something by it. I beg of you to present my best respects to Mrs. Gray & to remember me to your son.

 I am my dear Sir with many thanks for your hospitality & kindness when I was at Sunderland.

                                                              Your….

                                                                             H. Davy

This letter is clearly Davy’s initial announcement of a scientifically-based invention which ultimately had a pronounced real and symbolic effect on the nascent idea of “better living through chemistry” – a phrase I recall from early television ads run by a large industrial company like Dupont or Monsanto.

davy_3crop

In 1818, Davy published his book on the urgent, but thorough scientific researches he and Faraday conducted in 1815 on the nature of the fire damp (methane gas) and its flammability.

dscn4290x

Davy’s coal miner’s safety lamp was the subject of papers presented by Davy before the Royal Society of London in 1816. The Royal Society was, for centuries since its founding by King Charles II in 1662, the foremost scientific body in the world. Sir Isaac Newton, the greatest scientific mind in history, presided as its president from 1703 until his death in 1727. The Society’s presence and considerable influence is still felt today, long afterward.

davy41Davy’s safe lamp had an immediate effect on mine explosions and miner safety, although there were problems which required refinements to the design. The first models featured a wire gauze cylinder surrounding the flame chamber which affected the temperature of the air/methane mixture in the vicinity of the flame. This approach took advantage of the flammability characteristics of methane gas which had been studied so carefully by Davy and his recently hired assistant, Michael Faraday. Ultimately, the principles of the Davy lamp were refined sufficiently to allow the deep-shaft mining of coal to continue in relative safety, literally fueling the industrial revolution.

Humphry Davy was a most unusual individual, as much poet and philosopher in addition to his considerable talents as a scientist. He was close friends with and a kindred spirit to the poets Coleridge, Southey, and Wordsworth. He relished rhetorical flourish and exhibited a personal idealism in his earlier years, a trait on open display in the letter to the Reverend Gray, shown above, regarding his initial success with the miner’s safe lamp.

“I have never received so much pleasure from the results of my chemical labours, for I trust the cause of humanity will gain something by it.”

As proof of the sincerity of this sentiment, Davy refused to patent his valuable contribution to the safety of thousands of coal miners!

Davy has many scientific “firsts” to his credit:

-Experimented with the physiological effects of the gas nitrous oxide (commonly known as “laughing gas”) and first proposed it as a possible medical/dental anesthetic – which it indeed became years later, in 1829.

-Pioneered the new science of electrochemistry using the largest voltaic pile (battery) in the world, constructed for Davy in the basement of the R.I. Alessandro Volta first demonstrated the principles of the electric pile in 1800, and within two years, Davy was using his pile to perfect electrolysis techniques for separating and identifying “new” fundamental elements from common chemical compounds.

-Separated/identified the elements potassium and sodium in 1807, soon followed by others such as calcium and magnesium.

-In his famous, award-winning Bakerian Lecture of 1806, On Some Chemical Agencies of Electricity, Davy shed light on the entire question concerning the constituents of matter and their chemical properties.

-Demonstrated the “first electric light” in the form of an electric arc-lamp which gave off brilliant light.

-Wrote several books including Elements of Chemical Philosophy in 1812.

In addition to his pioneering scientific work, Davy’s heritage still resonates today for other, more general reasons:

-He pioneered the notion of “professional scientist,” working, as he did, as paid staff in one of the world’s first organized/chartered bodies for the promulgation of science and technology, the Royal Institution of Great Britain.

-As previously noted, Davy is properly regarded as the savior of the Royal Institution. Without him, its doors surely would have closed after only two years. His public lectures in the Institution’s lecture theatre quickly became THE rage of established society in and around London. Davy’s charismatic and informative presentations brought the excitement of the “new sciences” like chemistry and electricity front and center to both ladies and gentlemen. Ladies were notably and fashionably present at his lectures, swept up by Davy’s personal charisma and seduced by the thrill of their newly acquired knowledge… and enlightenment!

royal_institution_-_humphry_davy1

The famous 1802 engraving/cartoon by satirist/cartoonist James Gillray
Scientific Researches!….New Discoveries on Pneumaticks!…or…An
Experimental Lecture on the Power of Air!

This very famous hand-colored engraving from 1802 satirically portrays an early public demonstration in the lecture hall of the Royal Institution of the powers of the gas, nitrous oxide (laughing gas). Humphry Davy is shown manning the gas-filled bellows! Note the well-heeled gentry in the audience including many ladies of London. Davy’s scientific reputation led to his eventual English title of Baronet and the honor of Knighthood, thus making him Sir Humphry Davy.

The lecture tradition at the R.I. was begun by Davy in 1801 and continued on for many years thereafter by the young, uneducated man hired by Davy himself in 1813 as lab assistant. Michael Faraday was to become, in only eight short years, the long-tenured shining star of the Royal Institution and a physicist whose contributions to science surpassed those of Davy and were but one rank below the legacies of Galileo, Newton, Einstein, and Maxwell. Faraday’s lectures at the R.I. were brilliantly conceived and presented – a must for young scientific minds, both professional and public – and the Royal Institution in London remained a focal point of science for more than three decades under Faraday’s reign, there.

ri-prospectus-1800faraday-ticket-cropped

The charter and by-laws of the R.I. published in 1800 and an admission ticket to Michael Faraday’s R.I. lecture on electricity written and signed by him: “Miss Miles or a friend / May 1833”

Although once again facing economic hard times, the Royal Institution exists today – in the same original quarters at 21 Albemarle Street. Its fabulous legacy of promulgating science for over 217 years would not exist were it not for Humphry Davy and Michael Faraday. It was Davy himself who ultimately offered that the greatest of all his discoveries was …Michael Faraday.