Hermann Minkowski, Albert Einstein and Four-dimensional Space-time

Is the concept of free-will valid as it relates to humans? A mathematics lecture presented in September of 1908 in Cologne, Germany by Hermann Minkowski not only paved the way for the successful formulation of Albert Einstein’s general theory of relativity in 1916, it also forced us to completely revamp our intuitions regarding the notion of time and space while calling into question the concept of human free-will! Some brief and simplified background is in order.

Prior to Minkowski’s famous lecture concerning Raum Und Zeit (Space and Time), the fabric of our universe was characterized by three-dimensional space accompanied by the inexorable forward flow of time. The concept of time has long been a stubbornly elusive notion, both in philosophy and in physics. From the mid-nineteenth century onward, there had increasingly been problems with our conception of “time.” The difficulties surfaced with the work of James Clerk Maxwell and his mathematical characterization of electromagnetic waves (which include radio waves and even light) and their propagation through space. Maxwell revealed his milestone “Maxwell’s equations” to the world in 1865. His equations have stood the test of time and remain the technical basis for today’s vast communication networks. But there was a significant problem stemming from Maxwell’s work, and that was his prediction that the speed of light propagation (and that of all electromagnetic waves) is constant for all observers in the universe. Logically, that prediction appeared to be implausible when carefully examined. In fact, notice of that implausibility stirred a major crisis in physics during the final decades of the nineteenth century. Einstein, Poincare, Lorentz and many other eminent physicists and mathematicians devoted much of their time and attention to the seeming impasse during those years.

Enter Einstein’s special theory of relativity in 1906

In order to resolve the dilemma posed by Maxwell’s assertion of a constant propagation speed for light and all related electromagnetic phenomena, Albert Einstein formulated his special theory of relativity which he published in 1906. Special relativity resolved the impasse created by Maxwell by introducing one of the great upheavals in the history of science. Einstein posited three key stipulations for the new physics:

A new law of physics: The speed of light is constant as determined by all “observers” in the universe, no matter what their relative motion may be with respect to a light source. This, in concert with the theoretically-based dictate from Maxwell that the speed of light is constant for all observers. Einstein decreed this as a new fundamental law of physics. In order for this new law to reign supreme in physics, two radical concessions regarding space and time proved necessary.
Concession #1: There exists no absolute measure of position and distance in the universe. Stated another way, there exists no reference point in space and no absolute framework for determining distance coordinates. One result of this: consider two observers, each with his own yardstick, whose platforms (habitats, or “frames of reference,” as it were) are moving relatively to one another. At rest with respect to one another, each observer sees the other’s yardstick as identical in length to their own. As the relative velocity (speed) between the two observers and their platforms increases and approaches the constant speed of light (roughly 186,000 miles per second), the other observer’s “yardstick” will increasingly appear shorter to each observer, even though, when at relative rest, the two yardsticks appear identical in length.
Concession #2: There is no absolute time-keeper in the universe. The passage of time depends on one observer’s velocity with respect to another observer. One result of this: consider our same two observers, each with their own identical clocks. At rest with respect to one another, each observer sees the other’s clock as keeping perfect time with their own. As the relative velocity (speed) between the two observers and their platforms increases and approaches the constant speed of light, the other observer’s clock appears increasingly to slow down relative to their own clock which ticks merrily along at its constant rate.

Needless to say, the appearance in 1906 of Einstein’s paper on special relativity overturned many long-held assumptions regarding time and space. Einstein dissolved Isaac Newton’s assumptions of absolute space and absolute time.The new relativity physics of Einstein introduced a universe of shrinking yardsticks and slowing clocks. It took several years for Einstein’s new theory to gain acceptance. Even with all these upheavals, the resulting relativistic physics maintained the notion of (newly-relative) spatial frames defined by traditional coordinates in three mutually perpendicular directions: forward/backward, left/right, and up/down.

Also still remaining was the notion of time as a (newly-relative) measure which still flows inexorably forward in a continuous manner. As a result of the special theory, relativistic “correction factors” were required for space and time for observers and their frames of reference experiencing significant relative, velocities.

This framework of mathematical physics worked splendidly for platforms or “frames of reference” (and their resident observers) experiencing uniform relative motion (constant velocity) with respect to each other.

The added complications to the picture which result from including accelerated relative motions (the effect of gravity included) complicated Einstein’s task enormously and set the great man on the quest for a general theory of relativity which could also accommodate accelerated motion and gravity.

Einstein labored mightily on this new quest for almost ten years. By 1913, he had approached the central ideas necessary for general relativity, but the difficulties inherent in elegantly completing the task were seriously beginning to affect his health. In fact, the exertion nearly killed Einstein. The mathematics necessary for success was staggering, involving a complex “tensor calculus” which Einstein was insufficiently prepared to deal with. In desperation, he called his old friend from university days, Marcel Grossman, for help. Grossman was a mathematics major at the Zurich Polytechnic, and it was his set of class notes that saved the day for young Einstein on the frequent occasions when Einstein forsook mathematics lectures in favor of physics discussions at the local coffee houses. Grossman’s later assistance with the requisite mathematics provided a key turning point for Einstein’s general theory of relativity.

Enter Hermann Minkowski with Raum Und Zeit

The initial 1909 publication of Raum Und Zeit

On September 8, 1908 in Cologne, Germany, the rising mathematics star, Hermann Minkowski, gave a symposium lecture which provided the elusive concepts and mathematics needed by Einstein to elegantly complete his general theory of relativity. Similar to Einstein’s 1906 special theory of relativity, the essence of Minkowski’s contribution involved yet another radical proposal regarding space and time. Minkowski took the notion of continuously flowing time and melded it together with the three-dimensional coordinates defining space to create a new continuum: four-dimensional space-time which relegated the time parameter to a fourth coordinate point in his newly proposed four-dimensional space-time.

Now, just as three coordinate points in space specify precisely one’s physical location, the four-dimensional space-time continuum is an infinite collection of all combinations of place and time expressed in four coordinates. Every personal memory we have of a specific place and time – each event-instant in our lives – is defined by a “point” in four-dimensional space-time. We can say we were present, in times past, at a particular event-instant because we “traversed-through” or “experienced” a specific four-dimensional coordinate point in space-time which characterizes that particular event-instant. That is very different from saying we were positioned in a specific three-dimensional location at a specific instant of time which flows irresistibly only forward.

What do Minkowski’s mathematics imply about human free-will?

By implication, the continuum of four-dimensional space-time includes not only sets of four coordinate points representing specific events in our past (place and “time”), the continuum must include points specifying the place and “time” for all future events. This subtly suggests a pre-determined universe, where places and “times” are already on record for each of us, and this implies the absence of free-will, the ability to make conscious decisions such as where we will be and when in the future. This is a very controversial aspect of Minkowki’s four-dimensional space-time with distinctly philosophical arguments.

For certain, however, is the great success Minkowski’s mathematics of space-time has enjoyed as a basis for Einstein’s general theory of relativity. Most, if not all, aspects of Einstein’s special and general theories of relativity have been subjected to extensive experimental verification over many decades. There is no instance of any validly conducted experiment ever registering disagreement with Einstein’s special or general theories. That is good news for Hermann Minkowski, as well.

Minkowski’s new reality takes us beyond the two-dimensional world of a flat piece of paper, through the recent universe of three-dimensional space plus time, and into the brave new world of not only four-dimensional space-time, but curved four-dimensional space-time. The nature of curved space-time serves to replace the Newtonian notion of a gravitational force of attraction which enables the celestial ballet of the heavens. For instance, the orbit of earth around the sun is now regarded as the “natural path” of the earth through the curvature of four-dimensional space-time and not due to any force of attraction the sun exerts on the earth. According to the general theory of relativity, the mass of the sun imposes a curvature on the four-dimensional space-time around it, and it is that curvature which determines the natural path of the earth around the sun. Minkowski and his mathematics provided the final, crucial insight Einstein needed to not only radically redefine the nature of gravity, but to also successfully complete his general theory of relativity in 1916. Einstein’s theory and its revelations are generally regarded as the most significant and sublime product ever to emanate from the human intellect. Take a bow, Albert and Hermann.

My eulogy to Hermann Minkowski

Albert Einstein is assuredly the most recognized individual in human history – both the name and the image, and that is very understandable and appropriate. Very few in the public realm not involved with mathematics and physics have ever even heard the name, “Hermann Minkowski,” and that is a shame, for he was a full participant in Einstein’s milestone achievement, general relativity. Minkowski’s initial 1907 work on Raum Und Zeit came to Einstein’s attention early-on, but its mathematics were well beyond Einstein’s comprehension in that earlier time frame. It was not until several years later, that Einstein and Marcel Grossman began to recognize Minkowski’s gift to general relativity in the form of his mathematics of four-dimensional curved space-time.

Hermann Minkowski delivered his by-then polished lecture on space-time at Cologne, Germany, in September, 1908. Tragically, he died suddenly in January, 1909, at the young age of forty-four – from a ruptured appendix. His latest findings as presented in the Cologne lecture were published in January, 1909, days after his death, sadly.

The “lazy dog” has the last bark

Albert Einstein and Hermann Minkowski first crossed paths during Einstein’s student days at the Zurich Polytechnic, where Minkowski was teaching mathematics to young Einstein. Noting Einstein’s afore-mentioned irregular attendance at lectures in mathematics, the professor reportedly labeled the student Einstein as, “a lazy dog.” Rarely in the annals of human history has such an unpromising prospect turned out so well! I noted with great interest while researching this post that Einstein long regarded mathematics as merely a necessary tool for the advancement of physics, whereas Minkowski and other fine mathematicians of the past tended to consider mathematics as a prime mover in the acquisition and advancement of knowledge, both theoretical and practical; they viewed physics as the fortunate beneficiary of insights that mathematics revealed.

In the late years, Einstein came to appreciate the supremely important role that mathematics plays in the general advancement of science. As proof, I will only add that the great physicist realized his dependence on the mathematicians Grossman and Minkowski in the nick of time to prevent his theory of general relativity from going off the rails, ending on the scrap heap, and leaving Albert Einstein a completely spent physicist.

Note: For a detailed tour and layperson’s explanation of Einstein’s relativity theories, click on the image of my book: The Elusive Notion of Motion – The Genius of Kepler, Galileo, Newton, and Einstein – available on Amazon

THINK. Thinking is Hard Work

The history of IBM, the International Business Machine Corporation is as storied as any the world has seen. In recent times, Apple Computer had its iconic guru, Steve Jobs, to pave its pathway to fame and fortune. In earlier times, IBM’s Thomas J. Watson served much the same role in building his company into the tech giant it was to become. Watson coined the famous admonition, THINK – his way of spurring on the company’s workforce to bigger and brighter contributions. I recall as a youngster seeing his famous single-word motto displayed in such diverse places as banks, schools, and other institutions.

Photo: IBM Archives

IBM headquarters at Endicott, New York, 1935. Note the “THINK” motto emblazoned on the building. Pictured are 25 female college graduates, newly trained for three months as IBM system service women. Their role: after assignment to IBM branch offices, they assisted salesmen in assessing customer requirements and training customers on the use of IBM equipment. Their three male instructors are also pictured.

I find Watson’s admonition at once simple, yet profound. What does constitute the notion of “thinking,” and why is that a very non-trivial exercise? Critical thinking is important across all life-disciplines. I would venture, however, that science and engineering are more viable as gateways to understanding the process of critical thinking than most activities in which we humans are involved. Recall the oft-used phrase: “Its not exactly rocket science!”

My acquaintance with the subject derives from my educational and career background as an electrical engineer, here, in Silicon Valley, California. Anyone who has studied chemistry, physics, and mathematics at the college level can truly appreciate the notion of critical thinking. During my undergrad and graduate level years, I can recall, more than I care to admit, the long hours (even nights) spent on a concept or a homework problem that just would not submit to standard perusal.

Such incidents would call for sweeping aside the current method of attack in favor of a fresh new visualization of the problem. Often, this nasty situation occurred late at night while working under pressure to complete a homework assignment due the next day. The scenario just described demands what Thomas Watson so unabashedly promoted as his corporate motto: THINK. When persistence coupled with a fresh approach saved the day for me as a student, and later as working engineer, the joy of sudden insight and mastery of the issue at hand was sweet, indeed. That very joy and satisfaction serve to fuel the desire of science and engineering students to keep on studying and learning, despite the prospect of new and greater challenges ahead. One soon realizes that learning is primarily about harnessing the ability to think!

Thinking is hard, and most of us do not spend enough time doing it. At my advanced age and despite an active curiosity in earlier years, I still find myself formulating questions about all matter of things which I had never questioned before. Often my questions have to do with things financial. For instance: “Why is a rising stock price beneficial to the corporation involved since the corporation generally does not sell its stock directly to traders and investors? Ordinary folks outside the corporation who own shares as investors would seem to be the primary beneficiaries of such gains, and, yet, the mechanisms of corporate finance somehow bestow significant rewards to the corporation as well. How, exactly, does that work?” For a business major, that probably seems a naïve question, but, then again, how many business professionals have thought deeply about Einstein’s theory of special relativity? For us non-business types, it is quite easy to participate successfully as an investor in the complex equities market without really understanding what goes on “behind the curtain.” Ease of use leads to complacency, and complacency is ever the enemy of informative curiosity, it seems.

I worry about the younger generation, so many of whom seem to be satisfied with accumulating “factoids,” little isolated bits of information from the internet and social media. Thomas Watson understood that “to think” meant forming often non-obvious connections between seemingly isolated concepts and bits of information…and that is the hard part of thinking. The resulting “whole” of the picture which emerges by connecting the dots often proves the key to great scientific progress or profitable business opportunities.

Thinking was hard work even for history’s greatest minds. Isaac Newton stated the belief that his greatest personal asset was the ability to hold a particularly intractable problem clearly in his mind’s eye for days and weeks on-end while his conscious and sub-conscious mind churned toward a solution. Newton was clearly aware that such discipline and capability was not an attribute possessed by the rest of us. While attempting to apply his newly created laws of celestial mechanics to the complex motions of our own moon, Newton confessed to experiencing excruciating “headaches” over his difficulties with the moon’s motion. Thinking was hard, even for the greatest mind in recorded history! Certainly, the problems tackled by Newton were of a complexity far beyond our own everyday challenges. Albert Einstein attributed the essence of his genius to “merely” a combination of raging curiosity and the mule-like persistence which he brought to bear when uncovering nature’s most guarded secrets. Thinking and discovery were hard work for Einstein, as well.

The self-stated attributes of these two towering intellects have, as their common foundation, the willingness and the ability to THINK – to think long and hard about difficult problems and critical relationships in the physical world. I concur with Thomas J. Watson: although operating on a much lower plane than Newton and Einstein, we all need to THINK more deeply than ever about the world around us and about who we are. Consider the legacies left to us by Newton and Einstein – all the result of unbridled curiosity and the willingness to think deeply in search of answers to their own questions.

“Little Soldiers”: American Schools and Chinese Schools

Much has been written about the growing disparity between the test scores of Chinese and American students – especially in science and math. Yesterday’s San Jose Mercury News carried a preview of a new book titled Little Soldiers: An American Boy, a Chinese School, and the Global Race to Achieve.

This is a subject near and dear to my heart, so I naturally checked Amazon for the book. I was pleased to find that the book became available that very day. Based on the impressive newspaper review of the book and the author’s obvious writing ability, I ordered a copy and look forward to reading it, soon.

Why am I so interested in the general subject of students and their education? For two reasons: First, I was fortunate to be the first in my entire family tree to attend and graduate from college – many years ago (B.S. Electrical Engineering, Stanford University, 1963). Second, my wife and two grown daughters all taught/teach school. Accordingly, I have a great appreciation of the benefits from a good education as well as the difficulties teachers, today, encounter in school classrooms.

What are those difficulties in American schools? The core of the problems centers on poor student attitudes toward school and learning and too much leeway given to students, their parents, and school administrators – at the expense of teachers, classroom discipline, and effective education. I offer a concrete example.

My oldest daughter teaches in grades 1-3 in the public schools. In each of her classes for the last three years, she has been saddled with a different and singularly difficult student, one who sapped much of her time and energy each day in class and after class. Each of these youngsters would, in past years, have been cited as special education students – students with significant learning/attention/ behavior disabilities. Today’s educational philosophies embrace the policies of “mainstreaming,” or “inclusion” whereby such challenged students are placed in regular classes as opposed to special education classes where small classes of special needs students are capably handled by trained special-ed teachers. The thinking behind this recent policy of inclusion? Immersion in a regular class will benefit the disadvantaged student by minimizing stigma while conditioning the other students’ understanding and empathy toward those with problems.

The reality? A regular classroom which accommodates a special needs student with significant learning/attention/behavior problems is often a nightmare for the teacher and a detriment to the learning environment for the other students. One such student my daughter has encountered continually disrupted the class with unprovoked behaviors such as screaming, throwing objects at the other students (and the teacher), kicking other students and sometimes bolting from the classroom. Heeding directives from the teacher seemed void of priority.

The moral of that story: One child who should not be in a “regular” classroom, is accommodated by today’s educational system in America at the expense of all the other capable students in the classroom who suffer from continual distractions and lost teaching time during the school day. Even a full-time aide who can whisk the child from the classroom when that student “loses it” cannot prevent repeated and significant learning distractions for the rest of the class. The best hope for the teacher: After many weeks have passed and a bureaucratic battery of tests on the student indicates obvious severe learning/behavioral problems, the child might be removed from the classroom. In China, the teacher with such a behavior problem would have full discretion to immediately and permanently remove that student from class – no testing, no bureaucracy, no parental approval required. The teacher in China knows what is best for the class as a whole, and that is what counts in China. This is the “Chinese way” of education philosophy. It brings to mind an old Japanese proverb which states that “the nail that protrudes, gets hammered down.” Needless to say, that approach is a 180 degree departure from the current American way which would admonish that “the protruding nail be protected at all costs.”

The author of Little Soldiers, Lenora Chu is the American mother of two young boys whose family is residing in Shanghai, China; she experienced, first hand, the highly reported, high-achieving school system in Shanghai when one of her sons attended school, there. One experience she relates in the book supports the contentions I raise in this post concerning the authority vested in China’s schoolteachers. Ms. Chu’s son was struggling with winter asthma attacks which necessitated a rescue inhaler to deal with his attacks. When teacher Chen was approached by Ms. Chu who asked where her son could keep his inhaler in the classroom, the teacher responded that the inhaler and its use in class would create unwelcome distractions for the class and thus was not allowed. When Ms. Chu asked what she and her son’s options were, the teacher informed her that she could leave the school if not satisfied. Imagine that in America! Ms. Chu realized that “going to the principal” would not change matters given the authority the system grants to classroom teachers in China. Fortunately, the boy’s asthma problem was resolved thanks to a home-administered preventative steroid inhaler.

Here are my conclusions regarding the discussion so far:

-American schools have suffered greatly from the growing lack of teacher authority in the classroom. Most of us retired folks recall our parents going into requested teacher/parent conferences ready and willing to relegate top priority to the teacher’s remarks and to their side of the story. Today, too many parents enter into discussions prepared to defend their student’s version of events despite what the teacher has to say: The “Johnny can do no wrong” syndrome is alive and well in America, but certainly not in China.

-American schools must reverse the trend and put the interests of the majority of students ahead of those individual students who require special help. I am all for funding special education classes and teachers who can help those students with severe problems, but does it make any sense to try to “include” them in regular classrooms when, by definition, they will not be able to keep pace there and will detract from the learning experience of students ready, able, and willing to learn? In that respect, the Chinese have their priorities straight.

-My family’s combined educational experiences, here, in California’s tech-savvy “Silicon Valley,” have shown that Asian and Indian students tend to display greater focus and discipline in their approach to school and education than do other students. I believe this is the by-product of cultural influences which emphasize a respect for learning and knowledge. It is an attitude formed primarily by parental and peer example and it influences students positively, especially at an early age.

-My two granddaughters are currently students in high school and junior high. They are excellent students who work hard and spend many long hours on homework assignments each week. I know that for a fact. They attend good schools which have excellent achievement records. They DO experience self-imposed and peer-imposed pressure to do well in their studies, but even their experiences likely pale in comparison to those students in Shanghai, China who face extreme pressure from home and from society to excel in school.

-I favor taking the best of both worlds which define American and Chinese education. I believe teachers in America should have much more authority in their classrooms and more respect from students, parents, and administrators. Accordingly, better pay and greater prestige for teachers should serve to attract the best and brightest to the profession. Students should come to class with a “learning attitude” which can best be nurtured at home; often in America, this is not the case.

-The Chinese system is too demanding and disciplined, overall. The fallout rate (failure rate for life, essentially) of students is unacceptable. Regrettably, the extreme discipline and enforced learning of the Chinese system can easily strangle student curiosity and creative thought, and the presence of those two key factors is the real key to an optimal educational experience for students.

I have only begun to touch upon the issues important in any discussion of students, schools, and education. So much of successful learning by students emanates not from the schools and teachers, but from parents/guardians and the home environment. Unbridled curiosity is the key catalyst for success in school. My book, Nurturing Curiosity and Success in Science, Math, and Learning explores that concept in detail. As Albert Einstein once insisted, “I have no special talents. I am only passionately curious.” And he was.
My book is not only for parents whose students are underperforming in school, but also for new and prospective parents who wish to instill a “learning attitude” in their children. And, yes, for you parents who are wondering, I write at length about the student distractions of today – namely cell phones and social media!

Click on the link below to find my book on Amazon:

Alan’s book at Amazon

Sir Isaac Newton: “I Can Calculate the Motions of the Planets, but I Cannot Calculate the Madness of Men”

Isaac Newton, the most incisive mind in the history of science, reportedly uttered that sentiment about human nature. Why would he infer such negativity about his fellow humans? Newton’s scientific greatness stemmed from his ability to see well beyond human horizons. His brilliance was amply demonstrated in his great book, Philosophiae Naturalis Principia Mathematica in which he logically constructed his “system of the world,” using mathematics. The book’s title translates from Latin as Mathematical Principles of Natural Philosophy, often shortened to “the Principia” for convenience.

The Principia is the greatest scientific book ever published. Its enduring fame reflects Newton’s ground-breaking application of mathematics, including aspects of his then-fledgling calculus, to the seemingly insurmountable difficulties of explaining motion physics. An overwhelming challenge for the best mathematicians and “natural philosophers” (scientists) in the year 1684 was to demonstrate mathematically that the planets in our solar system should revolve around the sun in elliptically shaped orbits as opposed to circles or some other geometric path. The fact that they do move in elliptical paths was carefully observed by Johann Kepler and noted in his 1609 masterwork, Astronomia Nova.

In 1687, Newton’s Principia was published after three intense years of effort by the young, relatively unknown Cambridge professor of mathematics. Using mathematics and his revolutionary new concept of universal gravitation, Newton provided precise justification of Kepler’s laws of planetary motion in the Principia. In the process, he revolutionized motion physics and our understanding of how and why bodies of mass, big and small (planets, cannonballs, etc.), move the way they do. Newton did, indeed, as he stated, show us in the Principia how to calculate the motion of heavenly bodies.

In his personal relationships, Newton found dealing with people and human nature to be even more challenging than the formidable problems of motion physics. As one might suspect, Newton did not easily tolerate fools and pretenders in the fields of science and mathematics – “little smatterers in mathematicks,” he called them. Nor did he tolerate much of basic human nature and its shortcomings.

 In the Year 1720, Newton Came Face-to-Face with
His Own Human Vulnerability… in the “Stock Market!”

 In 1720, Newton’s own human fallibility was clearly laid bare as he invested foolishly and lost a small fortune in one of investing’s all-time market collapses. Within our own recent history, we have had suffered through the stock market crash of 1929 and the housing market bubble of 2008/2009. In these more recent “adventures,” society and government had allowed human nature and its greed propensity to over-inflate Wall Street to a ridiculous extent, so much so that a collapse was quite inevitable to any sensible person…and still it continued.

Have you ever heard of the great South Sea Bubble in England? Investing in the South Sea Trading Company – a government sponsored banking endeavor out of London – became a favorite past-time of influential Londoners in the early eighteenth century. Can you guess who found himself caught-up in the glitter of potential investment returns only to end up losing a very large sum? Yes, Isaac Newton was that individual along with thousands of others.

It was this experience that occasioned the remark about his own inability to calculate the madness of men (including himself)!

Indeed, he should have known better than to re-enter the government sponsored South Sea enterprise after initially making a tidy profit from an earlier investment in the stock. As can be seen from the graph below, Newton re-invested (with a lot!) in the South Sea offering for the second time as the bubble neared its peak and just prior to its complete collapse. Newton lost 20,000 English pounds (three million dollars in today’s valuations) when the bubble suddenly burst.

Clearly, Newton’s comment, which is the theme of this post, reflects his view that human nature is vulnerable to fits of emotion (like greed, envy, ambition) which in turn provoke foolish, illogical behaviors. When Newton looked in the mirror after his ill-advised financial misadventure, he saw staring back at him the very madness of men which he then proceeded to rail against! Knowing Newton through the many accounts of his life that I have studied, I can well imagine that his financial fiasco must have been a very tough pill for him to swallow. Many are the times in his life that Newton “railed” to vent his anger against something or someone; his comment concerning the “madness of men” is typical of his outbursts. Certainly, he could disapprove of his fellow man for fueling such an obvious investment bubble. In the end, and most painful for him, was his realization that he paid a stiff price for foolishly ignoring the bloody obvious. For anyone who has risked and lost on the market of Wall Street, the mix of feelings is well understood. Even the great Newton had his human vulnerabilities – in spades, and greed was one of them. One might suspect that Newton, the absorbed scientist, was merely naïve when it came to money matters.

That would be a very erroneous assumption. Sir Isaac Newton held the top-level government position of Master of the Mint in England, during those later years of his scientific retirement – in charge of the entire coinage of the realm!

 

For more on Isaac Newton and the birth of the Principia click on the link: https://reasonandreflection.wordpress.com/2013/10/27/the-most-important-scientific-book-ever-written-conceived-in-a-london-coffee-house/

Sir Humphry Davy: Pioneer Chemist and His Invention of the Coal Miner’s “Safe Lamp” at London’s Royal Institution – 1815

humphry-davy-51Among the many examples to be cited of science serving the cause of humanity, one story stands out as exemplary. That narrative profiles a young, pioneering “professional” chemist and his invention which saved the lives of thousands of coal miners while enabling the industrial revolution in nineteenth-century England. The young man was Humphry Davy, who quickly rose to become the most famous chemist/scientist in all of England and Europe by the year 1813. His personal history and the effects of his invention on the growth of “professionalism” in science are a fascinating story.

The year was 1799, and a significant event had occurred. The place: London, England. The setting: The dawning of the industrial revolution, shortly to engulf England and most of Europe. The significant event of which I speak: The chartering of a new, pioneering entity located in the fashionable Mayfair district of London. In 1800, the Royal Institution of Great Britain began operation in a large building at 21 Albemarle Street. Its pioneering mission: To further the cause of scientific research/discovery, particularly as it serves commerce and humanity.

21-albemarle-street-then

The original staff of the Royal Institution was tiny, headed by its founder, the notable scientist and bon-vivant, Benjamin Thompson, also known as Count Rumford. Quickly, by 1802, a few key members of the founding staff, including Rumford, were gone and the fledgling organization found itself in dis-array and close to closing its doors. Just one year earlier, in 1801, two staff additions had materialized, men who were destined to make their scientific marks in physics and chemistry while righting the floundering ship of the R.I. by virtue of their brilliance – Thomas Young and the object of this post, a young, relatively unknown, pioneering chemist from Penzance/Cornwall, Humphry Davy.

By the year 1800, the industrial revolution was gaining momentum in England and Europe. Science and commerce had already begun to harness the forces of nature required to drive industrial progress rapidly forward. James Watt had invented the steam engine whose motive horsepower was now bridled and serving the cause by the year 1800. The looming industrial electrical age was to dawn two decades later, spearheaded by Michael Faraday, the most illustrious staff member of the Royal Institution, ever, and one of the greatest physicists in the history of science.

In the most unlikely of scenarios at the Royal Institution, Humphry Davy interviewed and hired the very young Faraday as a lab assistant (essentially lab “gofer”) in 1813. By that time, Davy’s star had risen as the premier chemist in England and Europe; little did he know that the young Faraday, who had less than a grade-school education and who worked previously as a bookbinder, would, in twenty short years, ascend to the pinnacle of physics and chemistry and proceed to father the industrial electrical age. The brightness of Faraday’s scientific star soon eclipsed even that of Davy’s, his illustrious benefactor and supervisor.

For more on that story click on this link to my previous post on Michael Faraday: https://reasonandreflection.wordpress.com/2013/08/04/the-electrical-age-born-at-this-place-and-fathered-by-this-great-man/

Wanted: Ever More Coal from England’s Mines 
at the Expense of Thousands Lost in Mine Explosions

Within two short years of obtaining his position at the Royal Institution in 1813, young Faraday found himself working with his idol/mentor Davy on an urgent research project – a chemical examination of the properties of methane gas, or “fire damp,” as it was known by the “colliers,” or coal miners.

The need for increasing amounts of coal to fuel the burgeoning boilers and machinery of the industrial revolution had forced miners deeper and deeper underground in search of rich coal veins. Along with the coal they sought far below the surface, the miners encountered larger pockets of methane gas which, when exposed to the open flame of their miner’s lamp, resulted in a growing series of larger and more deadly mine explosions. The situation escalated to a national crisis in England and resulted in numerous appeals for help from the colliers and from national figures.

By 1815, Humphry Davy at the Royal Institution had received several petitions for help, one of which came from a Reverend Dr. Gray from Sunderland, England, who served as a spokesman/activist for the colliers of that region.

Davy and the Miner’s Safe Lamp:
Science Serving the “Cause of Humanity”

Working feverishly from August and into October, 1815, Davy and Faraday produced what was to become known as the “miner’s safe lamp,” an open flame lamp designed not to explode the pockets of methane gas found deep underground. The first announcement of Davy’s progress and success in his work came in this historic letter to the Reverend Gray dated October 30, 1815.

davy_1x

The announcement heralds one of the earliest, concrete examples of chemistry (and science) put to work to provide a better life for humanity.

Royal Institution
Albermarle St.
Oct 30

 My Dear Sir

                               As it was in consequence of your invitation that I endeavored to investigate the nature of the fire damp I owe to you the first notice of the progress of my experiments.

 My results have been successful far beyond my expectations. I shall inclose a little sketch of my views on the subject & I hope in a few days to be able to send a paper with the apparatus for the Committee.

 I trust the safe lamp will answer all the objects of the collier.

 I consider this at present as a private communication. I wish you to examine the lamps I had constructed before you give any account of my labours to the committee. I have never received so much pleasure from the results of my chemical labours, for I trust the cause of humanity will gain something by it. I beg of you to present my best respects to Mrs. Gray & to remember me to your son.

 I am my dear Sir with many thanks for your hospitality & kindness when I was at Sunderland.

                                                              Your….

                                                                             H. Davy

This letter is clearly Davy’s initial announcement of a scientifically-based invention which ultimately had a pronounced real and symbolic effect on the nascent idea of “better living through chemistry” – a phrase I recall from early television ads run by a large industrial company like Dupont or Monsanto.

davy_3crop

In 1818, Davy published his book on the urgent, but thorough scientific researches he and Faraday conducted in 1815 on the nature of the fire damp (methane gas) and its flammability.

dscn4290x

Davy’s coal miner’s safety lamp was the subject of papers presented by Davy before the Royal Society of London in 1816. The Royal Society was, for centuries since its founding by King Charles II in 1662, the foremost scientific body in the world. Sir Isaac Newton, the greatest scientific mind in history, presided as its president from 1703 until his death in 1727. The Society’s presence and considerable influence is still felt today, long afterward.

davy41Davy’s safe lamp had an immediate effect on mine explosions and miner safety, although there were problems which required refinements to the design. The first models featured a wire gauze cylinder surrounding the flame chamber which affected the temperature of the air/methane mixture in the vicinity of the flame. This approach took advantage of the flammability characteristics of methane gas which had been studied so carefully by Davy and his recently hired assistant, Michael Faraday. Ultimately, the principles of the Davy lamp were refined sufficiently to allow the deep-shaft mining of coal to continue in relative safety, literally fueling the industrial revolution.

Humphry Davy was a most unusual individual, as much poet and philosopher in addition to his considerable talents as a scientist. He was close friends with and a kindred spirit to the poets Coleridge, Southey, and Wordsworth. He relished rhetorical flourish and exhibited a personal idealism in his earlier years, a trait on open display in the letter to the Reverend Gray, shown above, regarding his initial success with the miner’s safe lamp.

“I have never received so much pleasure from the results of my chemical labours, for I trust the cause of humanity will gain something by it.”

As proof of the sincerity of this sentiment, Davy refused to patent his valuable contribution to the safety of thousands of coal miners!

Davy has many scientific “firsts” to his credit:

-Experimented with the physiological effects of the gas nitrous oxide (commonly known as “laughing gas”) and first proposed it as a possible medical/dental anesthetic – which it indeed became years later, in 1829.

-Pioneered the new science of electrochemistry using the largest voltaic pile (battery) in the world, constructed for Davy in the basement of the R.I. Alessandro Volta first demonstrated the principles of the electric pile in 1800, and within two years, Davy was using his pile to perfect electrolysis techniques for separating and identifying “new” fundamental elements from common chemical compounds.

-Separated/identified the elements potassium and sodium in 1807, soon followed by others such as calcium and magnesium.

-In his famous, award-winning Bakerian Lecture of 1806, On Some Chemical Agencies of Electricity, Davy shed light on the entire question concerning the constituents of matter and their chemical properties.

-Demonstrated the “first electric light” in the form of an electric arc-lamp which gave off brilliant light.

-Wrote several books including Elements of Chemical Philosophy in 1812.

In addition to his pioneering scientific work, Davy’s heritage still resonates today for other, more general reasons:

-He pioneered the notion of “professional scientist,” working, as he did, as paid staff in one of the world’s first organized/chartered bodies for the promulgation of science and technology, the Royal Institution of Great Britain.

-As previously noted, Davy is properly regarded as the savior of the Royal Institution. Without him, its doors surely would have closed after only two years. His public lectures in the Institution’s lecture theatre quickly became THE rage of established society in and around London. Davy’s charismatic and informative presentations brought the excitement of the “new sciences” like chemistry and electricity front and center to both ladies and gentlemen. Ladies were notably and fashionably present at his lectures, swept up by Davy’s personal charisma and seduced by the thrill of their newly acquired knowledge… and enlightenment!

royal_institution_-_humphry_davy1

The famous 1802 engraving/cartoon by satirist/cartoonist James Gillray
Scientific Researches!….New Discoveries on Pneumaticks!…or…An
Experimental Lecture on the Power of Air!

This very famous hand-colored engraving from 1802 satirically portrays an early public demonstration in the lecture hall of the Royal Institution of the powers of the gas, nitrous oxide (laughing gas). Humphry Davy is shown manning the gas-filled bellows! Note the well-heeled gentry in the audience including many ladies of London. Davy’s scientific reputation led to his eventual English title of Baronet and the honor of Knighthood, thus making him Sir Humphry Davy.

The lecture tradition at the R.I. was begun by Davy in 1801 and continued on for many years thereafter by the young, uneducated man hired by Davy himself in 1813 as lab assistant. Michael Faraday was to become, in only eight short years, the long-tenured shining star of the Royal Institution and a physicist whose contributions to science surpassed those of Davy and were but one rank below the legacies of Galileo, Newton, Einstein, and Maxwell. Faraday’s lectures at the R.I. were brilliantly conceived and presented – a must for young scientific minds, both professional and public – and the Royal Institution in London remained a focal point of science for more than three decades under Faraday’s reign, there.

ri-prospectus-1800faraday-ticket-cropped

The charter and by-laws of the R.I. published in 1800 and an admission ticket to Michael Faraday’s R.I. lecture on electricity written and signed by him: “Miss Miles or a friend / May 1833”

Although once again facing economic hard times, the Royal Institution exists today – in the same original quarters at 21 Albemarle Street. Its fabulous legacy of promulgating science for over 217 years would not exist were it not for Humphry Davy and Michael Faraday. It was Davy himself who ultimately offered that the greatest of all his discoveries was …Michael Faraday.

Charles Darwin’s Journey on the Beagle: History’s Most Significant Adventure

In 1831, a young, unknown, amateur English naturalist boarded the tiny ship, HMS Beagle, and embarked, as crew member, on a perilous, five-year journey around the world. His observations and the detailed journal he kept of his various experiences in strange, far-off lands would soon revolutionize man’s concept of himself and his place on planet earth. Darwin’s revelations came in the form of his theory of natural selection – popularly referred to as “evolution.”

H.M.S. Beagle_Galapagos_John Chancellor

Since the publication of his book, On the Origin of Species in 1859, which revealed to the scientific community his startling conclusions about all living things based on his voyage journal, Darwin has rightfully been ranked in the top tier of great scientists. In my estimation, he is the most important and influential natural scientist of all time, and I would rank him right behind Isaac Newton and Albert Einstein as the most significant and influential scientific figures of modern times.

Young Charles Darwin enrolled at the University of Edinburgh in 1825 to pursue a career in medicine. His father, a wealthy, prominent physician had attended Edinburgh and, indeed, exerted considerable influence on young Charles to follow him in a medical career. At Edinburgh, the sixteen-year old Darwin quickly found the study of anatomy with its dissecting theatre an odious experience. More than once, he had to flee the theatre to vomit outside after witnessing the dissection process. The senior Darwin, although disappointed in his son’s unsuitability for medicine, soon arranged for Charles to enroll at Cambridge University to study for the clergy. In Darwin’s own words: “He [the father] was very properly vehement against my turning an idle sporting man, which seemed my probable destination.”

Darwin graduated tenth in his class of 168 with a B.A. and very little interest in the clergy! During his tenure at Cambridge, most of young Darwin’s spare time was spent indulging his true and developing passion: Collecting insects with a special emphasis on beetles. Along the way, he became good friends with John Steven Henslow, professor of geology, ardent naturalist, and kindred spirit to the young Charles.

Wanted: A Naturalist to Sail On-Board the Beagle

On 24 August, 1831, in one of history’s most prescient communiques, Professor Henslow wrote his young friend and protegee: “I have been asked by [George] Peacock…to recommend him a naturalist as companion to Capt. Fitzroy employed by Government to survey the S. extremity of America [the coasts of South America]. I have stated that I considered you to be the best qualified person I know of who is likely to undertake such a situation. I state this not on the supposition of ye being a finished naturalist, but as amply qualified for collecting, observing, & noting any thing worthy to be noted in natural history.” Seldom in history has one man “read” another so well in terms of future potential as did Henslow in that letter to young Darwin!

Charles’ father expressed his opposition to the voyage, in part, on the following grounds as summarized by young Darwin:

-That such an adventure could prove “disreputable to my [young Darwin’s] character as a Clergyman hereafter.”

-That it seems “a wild scheme.”

-That the position of naturalist “not being [previously] accepted there must be some serious objection to the vessel or expedition.”

-That [Darwin] “should never settle down to a steady life hereafter.”

-That “it would be a useless undertaking.”

Darwin 1840_RichmondThe young man appealed to his uncle Josiah Wedgewood [of pottery family fame] whose judgement he valued. Scientific history hung in the balance as Uncle Josiah promptly weighed-in with the senior Darwin, offering convincing arguments in favor of the voyage. In rebuttal to the objection from Darwin’s father that “it would be a useless undertaking,” the Uncle reasoned: “The undertaking would be useless as regards his profession [future clergyman], but looking upon him as a man of enlarged curiosity, it affords him the opportunity of seeing men and things as happens to few.” Enlarged curiosity, indeed! How true that proved to be. The senior Darwin then made his decision in the face of Uncle Josiah’s clear vision and counsel: Despite lingering reservations, he gave his permission for Charles to embark on the historic sea voyage, one which more than any other, changed mankind’s sense of self. Had the decision been otherwise, Darwin’s abiding respect for his father’s opinion and authority would have bequeathed the world yet another clergyman while greatly impeding the chronicle of man and all living things on this planet.

On 27 December, 1831, HMS Beagle with Darwin aboard put out to sea, beginning an adventure that would circle the globe and take almost five years. Right from the start, young Charles became violently seasick, often confined to his swaying hammock hanging in the cramped quarters of the ship. Seasickness dogged young Darwin throughout the voyage. I marvel at the fortitude displayed by this young, recently graduated “gentleman from Cambridge” as he undertook such a daunting voyage. Given that the voyage would entail many months at sea, under sail, Capt. Fitzroy and Darwin had agreed from the start that Charles would spend most of his time on land, in ports of call, while the Beagle would busy itself surveying the local coastline per its original government charter. While on land, Darwin’s mission was to observe and record what he saw and experienced concentrating, of course, on the flora, fauna, and geology of the various diverse regions he would visit.

St. Jago, an island off the east coast of South America was the Beagle’s first stop on 16 January, 1832. It was here he made one of his first significant observations. Quoting from his journal: “The geology of this island is the most interesting part of its natural history. On entering the harbour, a perfectly horizontal white band in the face of the sea cliff, may be seen running for some miles along the coast, and at the height of about forty-five feet above the water. Upon examination, this white stratum is found to consist of calcareous [calcium] matter, with numerous shells embedded, most or all of which now exist on the neighboring coast.”

Darwin goes on to conclude that a stratum of sea-shells very much higher than the current water line speaks to ancient, massive upheavals of the earth in the region. From the simple, focused collector of beetles in his Cambridge days, Darwin had now become obsessed with the bigger picture of nature, a view which embraced the importance of geology/environment as key to decoding nature’s secrets.

In a fascinating section of his journal, Darwin describes his astonishment at the primitive state of the native inhabitants of Tierra Del Fuego, at the southern tip of South America. From the journal entry of 17 December, 1832: “In the morning, the Captain sent a party to communicate with the Fuegians. When we came within hail, one of the four natives who were present advanced to receive us, and began to shout most vehemently, wishing to direct us where to land. When we were on shore the party looked rather alarmed, but continued talking and making gestures with great rapidity. It was without exception the most curious and interesting spectacle I ever beheld: I could not have believed how wide was the difference between savage and civilized man; it is greater than between a wild and domesticated animal, inasmuch as in man there is a greater power of improvement.” A separate reference I recall reading referring to Darwin’s encounter with the Fuegians stated that he could scarcely believe that the naked, dirty, and primitive savages before his eyes were of the same species as the sherry-sipping professors back at Cambridge University – so vividly stated.

On 2 October, 1836, the Beagle arrived at Falmouth, Cornwall, her nearly five-year journey circumnavigating the globe complete. Throughout the trip, Darwin recorded life on the high seas and, most importantly, his myriad observations on the geology of the many regions visited on foot and horseback as well as the plant and animal life.

I often invoke the mantra to which I ardently subscribe: That fact is always stranger than fiction…and so much more interesting and important. Picturing Darwin, the elite Englishman and budding naturalist, riding horseback amidst the rough-hewn vaqueros [cowboys] of Chile speaks to the improbability of the entire venture. When studying Darwin, it quickly becomes clear to the reader that his equable nature and noble intents were obvious to those whose approval and cooperation were vital for the success of his venture. That was particularly true of the seaman crew of the Beagle and of Capt. Fitzroy whose private cabin on the ship, Darwin shared. Fortunately, Fitzroy was a man of considerable ability and efficiency in captaining the Beagle. He was, at heart, a man sensible of the power and importance of scientific knowledge, and that made his less admirable qualities bearable to Darwin. The crew made good-natured fun of the intellectual, newbie naturalist in their midst, but spared no effort in helping Darwin pack his considerable array of collected natural specimens, large and small, in boxes and barrels for shipment back to Professor Henslow at Cambridge. Many of these never arrived, but most did make their way “home.”

When Darwin returned to Cambridge after arriving back home at Cornwall, he was surprised to learn that Professor Henslow had spread news among his friends at Cambridge of the Beagle’s whereabouts in addition to sharing, with his university colleagues, the specimens sent home by his young protegee. Darwin had embarked on the Beagle’s voyage as an amateur collector of insects. Now, to his great surprise, he had become a naturalist with a reputation and a following within the elite circles at Cambridge, thanks to Professor Henslow.

Charles_Darwin_seated_crop[1]Once home, Charles Darwin wasted little time tackling the immense task of studying and categorizing the many specimens he had sent back during the voyage. By 1838, the vestiges of natural selection had begun to materialize in his mind. One situation of particular note that he recorded in the Galapagos Islands fueled his speculations. There, he noted that a species of bird indigenous to several of the islands in the archipelago seemed to have unique beaks depending upon which island they inhabited. In virtually all other aspects, the birds closely resembled one another – all members of a single species. Darwin noticed that the beaks in each case seemed most ideally suited to the particular size and shape of the seeds most plentiful on that particular island. Darwin took great pains to document these finches of the Galapagos, suspecting that they harbored important clues to nature’s ways. Darwin reasoned that somehow the birds seemed to be well-adapted to their environment/food source in the various islands. Clues such as this shaped his thought processes as he carefully distilled the notes entered in his journal during the voyage. By 1844, Charles Darwin had formulated the framework for his explanation of animal/plant adaptation to the environment. Except for one or two close and trusted colleagues, Darwin kept his budding theory to himself for years to come for important reasons which I discuss shortly.

 

Darwin published his book, Journal of Researches, in 1839. The book was taken from his copious journal entries during the voyage; within its pages resides the seed-stock from which would germinate Darwin’s ultimate ideas and his theory of natural selection. This book remained, to Darwin’s dying day, closer to his affections and satisfaction than any other including On the Origin of Species.

 

 

What Is the Essence of Natural Selection?

Darwin’s theory of natural selection proposed that species are not immutable across time and large numbers of individuals. There appear random variations in this or that characteristic in a particular individual within a large population. Such variations, beginning with that individual, could be passed along to future generations through its immediate offspring. In the case of a singular Galapagos finch born with a significantly longer and narrower beak than that of a typical bird in the species, that specimen and its offspring which might inherit the tendency will be inevitably subjected to “trial by nature.” If the longer, narrower beak makes it easier for these new birds to obtain and eat the seeds and insects present in their environment, these birds will thrive and go on, over time, to greatly out-reproduce others of their species who do not share the “genetic advantage.” Eventually that new characteristic, in this example, the longer, narrower beak, will predominate within the population in that environment. This notion is the essence of Darwin’s theory of natural selection. If the random variation at hand proves to be disadvantageous, future generations possessing it will be less likely to survive than those individuals without it.

Note that this description, natural selection, is far more scientifically specific than the oft-used/misused phrase applied to Darwin’s work: theory of evolution. To illustrate: “theory of evolution” is a very general phrase admitting even the possibility that giraffes have long necks because they have continually stretched them over many generations reaching for food on the higher tree canopies. That is precisely the thinking of one of the early supporters of evolution theory, the Frenchman, Lamarck, as expressed in his 1809 publication on the subject. Darwin’s “natural selection” explains the specific mechanism by which evolution occurs – except for one vital, missing piece… which we now understand.

Genetics, Heredity, and the DNA Double Helix:
 Random Mutations – the Key to Natural Selection!

Darwin did not know – could not know – the source of the random significant variations in species which were vital to his theory of natural selection. He came to believe that there was some internal genetic blueprint in living things that governed the species at hand while transmitting obvious “familial traits” to offspring. Darwin used the name “gemmules” referring to these presumed discrete building blocks, but he could go no further in explaining their true nature or behavior given the limited scientific knowledge of the time.

James Watson and Francis Crick won the 1962 Nobel Prize in medicine and physiology for their discovery in 1953 of the DNA double helix which carries the genetic information of all living things. The specific arrangement of chemical base-pair connections, or rungs, along the double helix ladder is precisely the genetic blueprint which Darwin suspected. The human genome has been decoded within the last twenty years yielding tremendous knowledge about nature’s life-processes. We know, for instance, that one particular – just one – hereditary base-pair error along the double helix can result in a devastating medical condition called Tay-Sachs, wherein initially healthy brains of newborns are destroyed in just a few years due to the body’s inability to produce a necessary protein. Literally every characteristic of all living things is dictated by the genetic sequence of four different chemical building blocks called bases which straddle the DNA double helix. The random variations necessary for the viability of Darwin’s theory of natural selection are precisely those which stem from random base-pair mutations, or variations, along the helix. These can occur spontaneously during genetic DNA replication, or they can result from something as esoteric as the alpha particles of cosmic radiation hitting a cell nucleus and altering its DNA. The end result of the sub-microscopic change might be trivial, beneficial, or catastrophic in some way to the individual.

Gregor Mendel: The Father of Genetics…Unknown to Darwin

In 1865, a sequestered Austrian monk published an obscure scientific paper in, of all things, a regional bee-keepers journal. Like Darwin, originally, Mendel had no formal scientific qualifications, only a strong curiosity and interest in the pea plants he tended in the monastery garden. He had wondered about the predominant colors of the peas from those plants, green and yellow, and pondered the possible mechanisms which could determine the color produced by a particular plant. To determine this, he concocted a series of in-breeding experiments to find out more. After exhaustive trials using pea color, size of plant, and five other distinguishing characteristics of pea plants, Mendel found that the statistics of inheritance involved distinct numerical ratios, as for example, a “one-in-four chance” for a specific in-breeding outcome. The round numbers present in Mendel’s experimental results suggested the existence of distinct, discrete genetic mechanisms at work – what Darwin vaguely had termed “gemmules.” Mendel’s 1865 paper describing his findings, and the work behind it cements Mendel’s modern reputation as the “Father of Genetics.” Incredibly and unfortunately virtually no one took serious notice of his paper until it was re-discovered in 1900, thirty-five years after its publication, by the English geneticist William Bateson!

Original offprints (limited initial printings for the author) of Mendel’s paper are among the rarest and most desirable of historical works in the history of science, selling for hundreds of thousands of dollars on the rare book/manuscript market. We know that only forty were printed and scarcely half of these have been accounted for. Question: Did Mendel send an offprint of his pea plant experiments to Charles Darwin in 1865, well after the publication of Darwin’s groundbreaking On the Origin of Species in 1859? An uncut [meaning unopened, thus unread] offprint was presumably found among Darwin’s papers after his death, according to one Mendel reference source. Certainly, no mention of it was ever made by Charles Darwin.

 It is an intriguing thought that the key, missing component of Darwin’s natural selection theory as espoused in his Origin of Species possibly resided unread and unnoticed on Darwin’s bookshelf! And is it not a shame that Mendel lived out his life in the abbey essentially unknown and without due credit for his monumental work in the new science of genetics, a specialty which he founded?

Darwin’s Reluctance to Publish His Theory Nearly Cost Him His Due Credit

Darwin finally revealed his theory of natural selection to the public and the scientific community at large in 1859 with the book publication of On the Origin of Species. In fact, the central tenets of the book had congealed in Darwin’s mind long before, by 1844. He had held the framework of his theory close to the vest for all that time! Why? Because to espouse evolutionary ideas in the middle of the nineteenth century was to invite scorn and condemnation from creationists within many religions. No one was more averse to a more secular universe which promoted the notion of a less personal creator, one which did not create man and animals in more or less final form (despite obvious diversity) than Emma Wedgewood Darwin, Darwin’s very religious wife. She believed in an afterlife in which she and her beloved husband would be joined together for eternity. Charles was becoming less and less certain of this religious ideal as the years went by and nature continued to reveal herself to the ever-inquiring self-made naturalist who had set out to probe her ways.

To espouse a natural world which, once its fundamental constituents were brought together, would henceforth change and regulate itself without further involvement by the Creator would be a painful repudiation of Emma’s fundamental beliefs in a personal God. For this very personal reason and because of the professional risk of being ostracized by the community of naturalists for promulgating radical, anti-religious ideas, Darwin put off publication of his grand book, the book which would insure him priority and credit for one of the greatest of all scientific conclusions.

After stalling publication for years and with his manuscript only half completed, Darwin was shocked into feverish activity on his proposed book by a paper he received on 18 June, 1858. It was from a fellow naturalist of Darwin’s acquaintance, one Alfred Russel Wallace. In his paper, Wallace outlined his version of natural selection which eerily resembled the very theory Darwin was planning to eventually publish to secure his priority. There was no doubt that Wallace had arrived independently at the same conclusions that Darwin had reached many years earlier. Wallace’s paper presented an extremely difficult problem for Darwin in that Wallace had requested that Darwin pass his [Wallace’s] paper on to their mutual friend, the pathfinding geologist, Charles Lyell.

Darwin in a Corner: Academic Priority at Stake
Over One of the Great Scientific Breakthroughs

Now Darwin felt completely cornered. If he passed Wallace’s paper on to Lyell as requested, essentially making it public, the academic community would naturally steer credit for the theory of natural selection to Wallace. On the other hand, having just received Wallace’s paper on the subject, how would it look if he, Darwin, suddenly announced publicly that he had already deciphered nature and her ways – well before Wallace had? That course of action could inspire suspicions of plagiary on Darwin’s part.

The priority stakes were as high as any since the time of Isaac Newton when he and the mathematician Gottfried Liebniz locked horns in a bitter battle over credit for development of the calculus. It had been years since Darwin’s voyage on the Beagle which began the long gestation of his ideas on natural selection. He had been sitting on his conclusions since 1844 for fear of publishing, and now he was truly cornered, “forestalled,” as he called it. Darwin, drawing on the better angels of his morose feelings, quickly proposed to Wallace that he [Darwin] would see to it that his [Wallace’s] paper be published in any journal of Wallace’s choosing. In what became a frenzied period in his life, he reached out to two of his closest colleagues and trusted confidants, Charles Lyell and Joseph Hooker for advice. The two been entrusted with the knowledge of Darwin’s work on natural selection for a long time; they well understood Darwin’s priority in the matter, and he needed them now. The two friends came up with a proposal: Publish both Wallace’s paper and a synopsis by Darwin outlining his own long-standing efforts and results. The Linnean Society presented their joint papers in their scientific journal on 1 July, 1858. Fortunately for Darwin, Alfred Russel Wallace was of a conciliatory nature regarding the potential impasse over priority by way of his tacit acknowledgement that his colleague had, indeed, been first to formulate his opinions on natural selection.

Nonetheless, for Darwin, the cat was out of the bag, and the task ahead was to work full-steam to complete the large book that would contain all the details of natural selection and insure his priority. He worked feverishly on his book, On the Origins of Species, right up to its publication by John Murray. The book went on sale on 22 November, 1859, and all 1250 copies sold quickly. This was an excruciating period of Darwin’s life. He was not only under unrelenting pressure to complete one of the greatest scientific books of all time, he was intermittently very ill throughout the process presumably from a systemic problem contracted during his early travels associated with the Beagle voyage. Yes, the expected controversy was to come immediately after publication of the book, but Darwin and his contentions have long weathered the storm. Few of his conclusions have not stood the test of time and modern scrutiny.

The Origin was his great book, but the book that was the origin of the Origin, his 1839 Journal of Researches always remained his favorite. Certainly, the Journal was written at a much happier time in Darwin’s life, a time flush with excitement over his prospects as a newly full-fledged naturalist. For me, the Journal brims with the excitement of travel and scientific discovery/fact-finding – the seed-corn of scientific knowledge (and new technologies). The Origin represents the resultant harvest from that germinated seed-corn.

“Endless Forms Most Beautiful” –
Natural Selection in Darwin’s Own Words

In his Introduction to the Origin, Darwin describes the essence of natural selection:

“In the next chapter, the struggle for existence amongst all organic beings throughout the world, which inevitably follows from their high geometrical powers of increase, will be treated of. This is the doctrine of Malthus, applied to the whole animal and vegetable kingdoms. As many more individuals of each species are born that can possibly survive; and as, consequently, there is a frequently occurring struggle for existence, it follows that any being, if it vary however slightly in any manner profitable to itself, under the complex and sometimes varying conditions of life, will have a better chance of surviving, and thus be naturally selected. From the strong principle of inheritance, any selected variety will tend to propagate its new and modified form.

Darwin and Religion

Charles Darwin, educated for the clergy at Cambridge, increasingly drifted away from orthodox religious views as his window on nature and her ways became more transparent to him over the decades. Never an atheist, his attitudes were increasingly agnostic as he increasingly embraced the results of his lifelong study of the natural world. The Creator, which Darwin believed in, was not, to him, the involved, shepherd of all living things in this world. Rather, he seemed more like the watchmaker who, after his watch was first assembled, wound it up and let it run on its own while retreating to the background.

 Another viewpoint, which I tend to favor and which may apply to Darwin: God, whom we cannot fully know in this life, created not only all living things at the beginning, but also the entire structure of natural law (science) which dictates not only the motion of the planets, but the future course of life forms. Natural selection, hence evolution as well, are central tenants of that complete structure of natural law. The laws of nature, which permanently bear the fingerprints of the creator and his creation, thus enable the self-powered, self-regulating behaviors of the physical and natural world – without contradiction.

 Charles Darwin: Humble Man and Scientific Titan

questioning-darwin-1024[1]

In writing this post, my re-acquaintance with Darwin has brought great joy. Some years, now, after initially reading the biographies and perusing his works, I re-discover the life and legacy which is so important to science. His body of work includes several other very important books beside his Journal and Origin. Beyond his scientific importance and the science, itself, lies the man himself – a man of very high character and superb intellect. Darwin was gifted with intense curiosity, that magical motor that drives great accomplishment in science. Passion and curiosity: Isaac Newton had them in great abundance, and so, too, did Albert Einstein. Yet, Charles Darwin was different in several respects from those two great scientists: First, he was fortunate enough to have been born to privilege and was thus comfortably able to devote his working life to science from the beginning. Second, Darwin was a very happily married man who fathered ten children, each of which he loved and doted upon. Third, Darwin’s character was impeccable in all respects. His personality was stiffened a bit by the English societal conventions prevalent then, but his humanity shows through in so many ways. His struggle with religion is one most of us can relate to.

Reading Darwin’s works is a joy both because he was an articulate, educated Englishman and because the contents of his books like the Journal and Origin are easily digestible compared to the major works of Newton and Einstein. Like Darwin himself, my favorite book of his is The Journal of Researches, sometimes referred to as the Voyage of the Beagle. What an adventure.

Darwins_Thinking_Path[1]

The “sandwalk” path around the extended property of his long-held estate, Down House. Darwin frequently traversed this closed path on solitary walks around the estate while he gathered his thoughts about matters both big and small.